如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x,過M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x

【答案】分析:(1)求出函數(shù)y=x2在M處的導(dǎo)數(shù)值,即切線PQ的斜率,利用點(diǎn)斜式寫出直線PQ的方程.
(2)對(duì)于直線PQ的方程分別令y=0,x=8得到直線PQ與x軸的交點(diǎn)坐標(biāo)及與直線x=8的交點(diǎn)坐標(biāo),利用兩點(diǎn)距離公式求出三角形的兩條直角邊,利用三角形的面積表示出面積,對(duì)面積函數(shù)求導(dǎo)數(shù),令導(dǎo)數(shù)等于0,判斷出根左右兩邊的導(dǎo)函數(shù)符號(hào),求出最大值.
解答:解:(1)f′(x)=2x    M(x,x2
∴PQ的方程2xx-y-x2=0
(2)PQ的方程中,令


PQ的方程中,令x=8,則y=16x-x2
∴|AQ|=16x-x2
.令S△PQA=u


是函數(shù)的增區(qū)是函數(shù)的減區(qū)
時(shí)面積最大
點(diǎn)評(píng):解決曲線的切線斜率問題,一般利用函數(shù)在切點(diǎn)處的導(dǎo)數(shù)值為切線的斜率;解決實(shí)際問題中的函數(shù)的最值問題,一般利用導(dǎo)數(shù)求出函數(shù)的極值即函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x0,過M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x0表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)選修2-2 1.1導(dǎo)數(shù)的概念練習(xí)卷(解析版) 題型:解答題

(本題滿分10分)   如圖,由y=0,x=8,y=x2圍成的曲邊三角形,在曲線弧OB上求一點(diǎn)M,使得過M所作的y=x2的切線PQ與OA,AB圍成的三角形PQA面積最大。

                                                 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x0,過M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x0表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年吉林省長春十一中高二(上)段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x,過M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x

查看答案和解析>>

同步練習(xí)冊(cè)答案