若直線l:與拋物線交于A、B兩點,O點是坐標原點。
(1)當m=-1,c=-2時,求證:OA⊥OB;
(2)若OA⊥OB,求證:直線l恒過定點;并求出這個定點坐標。
(3)當OA⊥OB時,試問△OAB的外接圓與拋物線的準線位置關系如何?證明你的結論。
解:設A(x1,y1)、B(x2,y2),由得
可知y1+y2=-2m y1y2=2c ∴x1+x2=2m2—2c x1x2= c2,
(1) 當m=-1,c=-2時,x1x2 +y1y2=0 所以OA⊥OB.
(2) 當OA⊥OB時,x1x2 +y1y2=0 于是c2+2c=0 ∴c=-2(c=0不合題意),此時,直線l:過定點(2,0).
(3) 由題意AB的中點D(就是△OAB外接圓圓心)到原點的距離就是外接圓的半徑。
而(m2—c+)2-[(m2—c)2+m2 ]= 由(2)知c=-2
∴圓心到準線的距離大于半徑,故△OAB的外接圓與拋物線的準線相離。
【解析】略
科目:高中數(shù)學 來源:2011-2012年黑龍江省高二上學期期中考試文科數(shù)學 題型:解答題
若直線l:與拋物線交于A、B兩點,O點是坐標原點。
(1)當時,求證:OA⊥OB;
(2)若OA⊥OB,求證:直線l恒過定點;并求出這個定點坐標。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山東省高二12月月考理科數(shù)學 題型:解答題
(本小題滿分12分). 若直線l:與拋物線交于A、B兩點,O點是坐標原點。
(1)當m=-1,c=-2時,求證:OA⊥OB;
(2)若OA⊥OB,求證:直線l恒過定點;并求出這個定點坐標。
(3)當OA⊥OB時,試問△OAB的外接圓與拋物線的準線位置關系如何?證明你的結論。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年北京市海淀區(qū)高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2011年廣東省高考數(shù)學模擬試卷1(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com