P正三角形ABC所在平面外一點,PA=PB=PC=,且PA,PB,PC兩兩垂直,則P到面ABC的距離為(  )
A.B.C.1D.
C

試題分析: 先根據(jù)題意,由于P正三角形ABC所在平面外一點,PA=PB=PC=,且PA,PB,PC兩兩垂直,故可知點P在底面的射影為底面的垂心,即為底面的重心,那么利用正三角形的性質(zhì)可知,底面的邊長為,則底面的高線長為,利用勾股定理可知P到面ABC的距離為1,選C.
點評:解決該試題的關鍵是畫出圖形,過P作底面ABC 的垂線,垂足為O,連接CO并延長交AB于E,說明PO為所求
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題11分)如圖,三棱錐C—ABD,CB = CD,AB = AD,∠BAD = 90°。E、F分別是BC、AC的中點。

(1)求證:AC⊥BD;
(2)若CA = CB,求證:平面BCD⊥平面ABD
(3)在上找一點M,在AD上找點N,使平面MED//平面BFN,說明理由;并求出的值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面,四邊形中, ,, ,,E為中點.
(1)求證:CD⊥面PAC;(2)求:異面直線BE與AC所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,斜三棱柱的底面是直角三角形,,點在底面內(nèi)的射影恰好是的中點,且.

(1)求證:平面平面;
(2)若二面角的余弦值為,設,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在空間四邊形ABCD中,點E、H分別是邊AB、AD的中點,F(xiàn)、G分別是邊BC、CD上的點,且,則(  )

(A)EF與GH互相平行
(B)EF與GH異面
(C)EF與GH的交點M可能在直線AC上,也可能不在直線AC上
(D)EF與GH的交點M一定在直線AC上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是不同的直線,是不同的平面,給出下列命題真命題是
A.若m⊥α,n⊥β,α⊥β,則m⊥nB.若m//α,n//β,α//β,則m//n
C.若m⊥α,n//β,α⊥β,則m⊥nD.若m//α,n⊥β,α⊥β,則m//n

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體中,E是棱的中點,則BE與平面所成角的正弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為三條不同的直線,為一個平面,下列命題中不正確的是(   )
A.若,則相交
B.若
C.若 // // ,,則
D.若// ,,,則//

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

、是兩條不同的直線,、是兩個不同的平面.考查下列命題,其中正確的命題是(  )
A.  B.
C.   D.

查看答案和解析>>

同步練習冊答案