為了解某校學生參加某項測試的情況,從該校學生中隨機抽取了6位同學,這6位同學的成績(分數(shù))如莖葉圖所示.

⑴求這6位同學成績的平均數(shù)和標準差;
⑵從這6位同學中隨機選出兩位同學來分析成績的分布情況,設(shè)為這兩位同學中成績低于平均分的人數(shù),求的分布列和期望.

⑴這6位同學的成績平均數(shù)為81;標準差為7;
的分布列為


0
1
2
P



的數(shù)學期望為.

解析試題分析:⑴代入平均數(shù)及標準差的公式即得;⑵由(1)可得平均分為81,所以低于平均分的有4人,現(xiàn)從中抽取2人,隨機變量可能的取值為0,1,2.這是一個超幾何分布,由超幾何分布的概率公式即可得其分布列及期望.
試題解析:⑴這6位同學的成績平均數(shù)為.
.
故這6位問學成績的標準差為s=7      .6分
⑵隨機變量可能的取值為0,1,2,則
.
的分布列為


0
1
2
P




的數(shù)學期望      12分
考點:1、平均數(shù)與標準差;2、隨機變量的分布列及期望;3、超幾何分布.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某高校在2011年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組
[95,100]得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,求第3,4,5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在這6名學生中隨機抽取2名學生接受甲考官的面試,求第4組至少有一名學生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個值越高,解代表空氣污染越嚴重:

PM2.5日均濃度
0~35
35~75
75~115
115~150
150~250
>250
空氣質(zhì)量級別
一級
二級
三級
四級
五級
六級
空氣質(zhì)量類別
優(yōu)

輕度污染
中度污染
重度污染
嚴重污染
 

某市2013年3月8日—4月7日(30天)對空氣質(zhì)量指數(shù)PM2.5進行檢測,獲得數(shù)據(jù)后整理得到如下條形圖:
(1)估計該城市一個月內(nèi)空氣質(zhì)量類別為良的概率;
(2)從空氣質(zhì)量級別為三級和四級的數(shù)據(jù)中任取2個,求至少有一天空氣質(zhì)量類別為中度污染的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了對新產(chǎn)品進行合理定價,對該產(chǎn)品進行了試銷試驗,以觀察需求量Y(單位:千件)對于價格x(單位:千元)的反應(yīng),得數(shù)據(jù)如下:

x/千元
50
70
80
40
30
90
95
97
y/千件
100
80
60
120
135
55
50
48
(1)若y與x之間具有線性相關(guān)關(guān)系,求y對x的回歸直線方程;
(2)若成本x=y(tǒng)+500,試求:
①在盈虧平衡條件下(利潤為零)的價格;
②在利潤為最大的條件下,定價為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

想象一下一個人從出生到死亡,在每個生日都測量身高,并作出這些數(shù)據(jù)的散點圖,這些點將不會落在一條直線上,但在一段時間內(nèi)的增長數(shù)據(jù)有時可以用線性回歸來分析,下表是一位母親給兒子做的成長記錄:

年齡/周歲
3
4
5
6
7
8
9
身高/cm
91.8
97.6
104.2
110.9
115.6
122.0
128.5
 
年齡/周歲
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0
(1)年齡(解釋變量)和身高(預(yù)報變量)之間具有怎樣的相關(guān)關(guān)系?
(2)如果年齡相差5歲,則身高有多大差異(3~16歲之間)?
(3)如果身高相差20 cm,其年齡相差多少(3~16歲之間)?
(4)計算殘差,說明該函數(shù)模型是否能夠較好地反映年齡與身高的關(guān)系,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下表是對某市8所中學學生是否吸煙進行調(diào)查所得的結(jié)果:

 
吸煙學生
不吸煙學生
父母中至少有一人吸煙
816
3 203
父母均不吸煙
188
1 168
(1)在父母至少有一人吸煙的學生中,估計吸煙學生所占的百分比是多少?
(2)在父母均不吸煙的學生中,估計吸煙學生所占的百分比是多少?
(3)學生的吸煙習慣和父母是否吸煙有關(guān)嗎?請簡要說明理由.
(4)有多大的把握認為學生的吸煙習慣和父母是否吸煙有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示的莖葉圖記錄了甲、乙兩組各四名同學的投籃命中次數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以表示.

(1)如果乙組同學投籃命中次數(shù)的平均數(shù)為,求及乙組同學投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學中,各隨機選取一名,求這兩名同學的投籃命中次數(shù)之和為17的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知某山區(qū)小學有100名四年級學生,將全體四年級學生隨機按00~99編號,并且按編號順序平均分成10組.現(xiàn)要從中抽取10名學生,各組內(nèi)抽取的編號按依次增加10進行系統(tǒng)抽樣.

(1)若抽出的一個號碼為22,則此號碼所在的組數(shù)是多少?據(jù)此寫出所有被抽出學生的號碼;
(2)分別統(tǒng)計這10名學生的數(shù)學成績,獲得成績數(shù)據(jù)的莖葉圖如圖4所示,求該樣本的方差;
(3)在(2)的條件下,從這10名學生中隨機抽取兩名成績不低于73分的學生,求被抽取到的兩名學生的成績之和不小于154分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

參加市數(shù)學調(diào)研抽測的某校高三學生成績分析的莖葉圖和頻率分布直方圖均受到不同程度的破壞,但可見部分信息如下,據(jù)此解答如下問題:

(1)求參加數(shù)學抽測的人數(shù)、抽測成績的中位數(shù)及分數(shù)分別在內(nèi)的人數(shù);
(2)若從分數(shù)在內(nèi)的學生中任選兩人進行調(diào)研談話,求恰好有一人分數(shù)在內(nèi)的概率.

查看答案和解析>>

同步練習冊答案