【題目】設(shè)m,n∈R,若直線(xiàn)(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是( )
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)
【答案】D
【解析】解:由圓的方程(x﹣1)2+(y﹣1)2=1,得到圓心坐標(biāo)為(1,1),半徑r=1, ∵直線(xiàn)(m+1)x+(n+1)y﹣2=0與圓相切,
∴圓心到直線(xiàn)的距離d= =1,
整理得:m+n+1=mn≤ ,
設(shè)m+n=x,則有x+1≤ ,即x2﹣4x﹣4≥0,
∵x2﹣4x﹣4=0的解為:x1=2+2 ,x2=2﹣2 ,
∴不等式變形得:(x﹣2﹣2 )(x﹣2+2 )≥0,
解得:x≥2+2 或x≤2﹣2 ,
則m+n的取值范圍為(﹣∞,2﹣2 ]∪[2+2 ,+∞).
故選D
由圓的標(biāo)準(zhǔn)方程找出圓心坐標(biāo)和半徑r,由直線(xiàn)與圓相切時(shí),圓心到直線(xiàn)的距離等于圓的半徑,利用點(diǎn)到直線(xiàn)的距離公式列出關(guān)系式,整理后利用基本不等式變形,設(shè)m+n=x,得到關(guān)于x的不等式,求出不等式的解集得到x的范圍,即為m+n的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知向量 , ,定點(diǎn) 的坐標(biāo)為 ,點(diǎn) 滿(mǎn)足 ,曲線(xiàn) ,區(qū)域 ,曲線(xiàn) 與區(qū)域 的交集為兩段分離的曲線(xiàn),則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,滿(mǎn)足2asinA=(2b﹣ c)sinB+(2c﹣ b)sinC. (Ⅰ)求角A的大;
(Ⅱ)若a=2,b=2 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面BB1C1C為菱形,B1C的中點(diǎn)為O,且AO⊥平面BB1C1C.
(1)證明:B1C⊥AB;
(2)若AC⊥AB1 , ∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α∈[ , ],β∈[﹣ ,0],且(α﹣ )3﹣sinα﹣2=0,8β3+2cos2β+1=0,則sin( +β)的值為( )
A.0
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l1的方程為3x+4y﹣12=0,
(1)求l2的方程,使得:①l2與l1平行,且過(guò)點(diǎn)(﹣1,3); ②l2與l1垂直,且l2與兩坐標(biāo)軸圍成的三角形面積為4;
(2)直線(xiàn)l1與兩坐標(biāo)軸分別交于A、B 兩點(diǎn),求三角形OAB(O為坐標(biāo)原點(diǎn))內(nèi)切圓及外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在班級(jí)的演講比賽中,將甲、乙兩名同學(xué)的得分情況制成如圖所示的莖葉圖.記甲、乙兩名同學(xué)所得分?jǐn)?shù)的平均分分別為 甲、 乙 , 則下列判斷正確的是( )
A. 甲< 乙 , 甲比乙成績(jī)穩(wěn)定
B. 甲> 乙,甲比乙成績(jī)穩(wěn)定
C. 甲< 乙 , 乙比甲成績(jī)穩(wěn)定
D. 甲> 乙 , 乙比甲成績(jī)穩(wěn)定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga (0<a<1)為奇函數(shù),當(dāng)x∈(﹣2,2a)時(shí),函數(shù)f(x)的值域是(﹣∞,1),則實(shí)數(shù)a+b= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)方程C:x2+y2﹣2x﹣4y+m=0.
(1)當(dāng)m=﹣6時(shí),求圓心和半徑;
(2)若曲線(xiàn)C表示的圓與直線(xiàn)l:x+2y﹣4=0相交于M,N,且 ,求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com