(本小題滿分13分)
已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).

(Ⅰ)求橢圓方程;
(Ⅱ)當(dāng)時(shí),求面積;
(Ⅲ)求取值范圍.
(Ⅰ) ;(Ⅱ)  ;(Ⅲ)

試題分析:(Ⅰ) 
∴橢圓方程為           4分
(Ⅱ)設(shè),
,在 中,由余弦定理得:
 
         7分
              9分
(Ⅲ)設(shè) ,則 ,即 
 ,∴
         11分
 ,∴
         13分
點(diǎn)評(píng):解答時(shí)注意以下的轉(zhuǎn)化:⑴若直線與圓錐曲線有兩個(gè)交點(diǎn),對(duì)待交點(diǎn)坐標(biāo)是“設(shè)而不求”的原則,要注意應(yīng)用韋達(dá)定理處理這類問題; ⑵平面向量與解析幾何綜合題,遵循的是平面向量坐標(biāo)化,應(yīng)用的是平面向量坐標(biāo)運(yùn)算法則還有兩向量平行、垂直來解決問題,這就要求同學(xué)們?cè)诨靖拍睢⒒痉椒、基本能力上下功夫?/div>
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)點(diǎn)到直線的距離與它到定點(diǎn)的距離之比為,并記點(diǎn)的軌跡為曲線
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),過點(diǎn)的直線與曲線相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在由四點(diǎn)構(gòu)成的四邊形內(nèi)(包括邊界)時(shí),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線與曲線的交點(diǎn)的個(gè)數(shù)是        個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)到雙曲線的一條漸近線的距離為,則該雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,設(shè)點(diǎn)、分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且最小值為

(1)求橢圓的方程;
(2)若動(dòng)直線均與橢圓相切,且,試探究在軸上是否存在定點(diǎn),點(diǎn)的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上有n個(gè)不同的點(diǎn):P1,P2, ,Pn,橢圓的右焦點(diǎn)為F,數(shù)列{|PnF|}是公差大于的等差數(shù)列,則n的最大值是 ( )
A.198B.199
C.200D.201

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓、兩點(diǎn),交直線于點(diǎn).若,證明:的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)滿足,寫出求作點(diǎn)、的步驟,并求出使存在的θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn),一個(gè)長(zhǎng)軸端點(diǎn)為,短軸端點(diǎn)和焦點(diǎn)所組成的四邊形為正方形,若直線軸交于點(diǎn),與橢圓交于不同的兩點(diǎn),且。(14分)
(1)求橢圓的方程;
(2)求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知拋物線C1:y2=4x的焦點(diǎn)與橢圓C2:的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn);
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y2=4x上運(yùn)動(dòng),求ABC重心G的軌跡方程;
(Ⅱ)若P是拋物線C1與橢圓C2的一個(gè)公共點(diǎn),且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案