在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E為AB的中點(diǎn).
(Ⅰ)求證:AN平面MEC;
(Ⅱ)在線(xiàn)段AM上是否存在點(diǎn)P,使二面角P-EC-D的大小為
π
6
?若存在,求出AP的長(zhǎng)h;若不存在,請(qǐng)說(shuō)明理由.
(I)CM與BN交于F,連接EF.
由已知可得四邊形BCNM是平行四邊形,
所以F是BN的中點(diǎn).
因?yàn)镋是AB的中點(diǎn),
所以ANEF.…(7分)
又EF?平面MEC,AN?平面MEC,
所以AN平面MEC.…(9分)
(II)由于四邊形ABCD是菱形,E是AB的中點(diǎn),可得DE⊥AB.
又四邊形ADNM是矩形,面ADNM⊥面ABCD,∴DN⊥面ABCD,
如圖建立空間直角坐標(biāo)系D-xyz,則D(0,0,0),E(
3
,0,0),C(0,2,0),P(
3
,-1,h),
CE
=(
3
,-2,0),
EP
=(0,-1,h),設(shè)平面PEC的法向量為
n1
=(x,y,z).
CE
n1
=0
EP
n1
=0
,∴
3
x-2y=0
-y+hz=0
,
令y=
3
h,∴
n1
=(2h,
3
h,
3
),又平面ADE的法向量
n2
=(0,0,1),
∴cos<
n1
,
n2
>=
n1
n2
|
n1
||
n2
|
=
3
7h2+3
=
3
2
,解得h=
7
7
,
∴在線(xiàn)段AM上是否存在點(diǎn)P,當(dāng)h=
7
7
時(shí)使二面角P-EC-D的大小為
π
6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在如圖所示的幾何體ABCED中,EC⊥面ABC,DB⊥面ABC,CE=CA=CB=2DB,∠ACB=90°,M為
AD的中點(diǎn).(1)證明:EM⊥AB;(2)求直線(xiàn)BM和平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐P-ABCD的底面ABCD是直角梯形,ABCD,AD⊥AB,AD=AB=
1
2
CD=1,PD⊥面ABCD,PD=
2
,E是PC的中點(diǎn)
(1)證明:BE面PAD;
(2)求二面角E-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知四邊形ABCD與CDEF均為正方形,平面ABCD⊥平面CDEF.
(Ⅰ)求證:ED⊥平面ABCD;
(Ⅱ)求二面角D-BE-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在底面是正方形的四棱錐P-ABCD中,PA=AB=1,PB=PD=
2
,點(diǎn)E在PD上,且PE:ED=2:1.
(1)求證:PA⊥平面ABCD;
(2)求二面角D-AC-E的余弦值;
(3)在棱PC上是否存在一點(diǎn)F,使得BF平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四面體ABCD中,O是BD的中點(diǎn),△ABD和△BCD均為等邊三角形,AB=2,AC=
6

(I)求證:AO⊥平面BCD;
(Ⅱ)求二面角A-BC-D的余弦值;
(Ⅲ)求O點(diǎn)到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中AA1=AD=1,E為CD中點(diǎn).
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點(diǎn)P,使得DP平面B1AE?若存在,求AP的長(zhǎng);若不存在,說(shuō)明理由.
(Ⅲ)若二面角A-B1E-A1的大小為30°,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B′C′D′,四邊形ABCD是菱形,其中E為BD的中點(diǎn).
(1)求證:C′E面AB′D′;
(2)求面AB'D'與面ABD所成銳二面角的余弦值;
(3)求四棱錐B'-ABCD與D'-ABCD的公共部分體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,,,,且,則         

查看答案和解析>>

同步練習(xí)冊(cè)答案