【題目】在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分別為棱AB、BC的中點(diǎn),點(diǎn)F在棱AA1上.
(1)證明:直線A1C1∥平面FDE;
(2)若F為棱AA1的中點(diǎn),求三棱錐A1﹣DEF的體積.

【答案】
(1)證明:直三棱柱ABC﹣A1B1C1中,D、E分別為棱AB、BC的中點(diǎn),

∴DE∥AC,

又A1C1∥AC,

∴A1C1∥DE;

又DE平面FDE,A1C1平面FDE,

∴直線A1C1∥平面FDE


(2)解:如圖所示:

當(dāng)F為棱AA1的中點(diǎn)時(shí),AF= AA1=1,

三棱錐A1﹣ADE的體積為

= SADEAA1= × DEECAA1= ×1×1×2=

三棱錐F﹣ADE的體積為

VFADE= SADEAF= × DEEC AA1= ;

∴三棱錐A1﹣DEF的體積為

﹣VFADE= =


【解析】(1)根據(jù)題意,證明DE∥AC,再證A1C1∥DE,從而證明直線A1C1∥平面FDE;(2)利用三棱錐A1﹣DEF的體積為 ﹣VFADE,即可求出結(jié)果.
【考點(diǎn)精析】掌握直線與平面平行的判定是解答本題的根本,需要知道平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對(duì)稱,令h(x)=g(1﹣x2),則關(guān)于函數(shù)y=h(x)的下列4個(gè)結(jié)論: ①函數(shù)y=h(x)的圖象關(guān)于原點(diǎn)對(duì)稱;
②函數(shù)y=h(x)為偶函數(shù);
③函數(shù)y=h(x)的最小值為0;
④函數(shù)y=h(x)在(0,1)上為增函數(shù)
其中,正確結(jié)論的序號(hào)為 . (將你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求滿足下列條件的曲線方程:
(1)經(jīng)過兩條直線2x+y﹣8=0和x﹣2y+1=0的交點(diǎn),且垂直于直線6x﹣8y+3=0的直線
(2)經(jīng)過點(diǎn)C(﹣1,1)和D(1,3),圓心在x軸上的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形DCFE為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC= ,AB=2BC=2,且AC⊥FB.
(1)求證:平面EAC⊥平面FCB;
(2)若線段AC上存在點(diǎn)M,使AE∥平面FDM,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥平面ABC.若AB=AC=AA1=1,BC= ,則異面直線A1C與B1C1所成的角為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將正弦曲線y=sinx上所有的點(diǎn)向右平移 π個(gè)單位長(zhǎng)度,再將圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼? 倍(縱坐標(biāo)不變),則所得到的圖象的函數(shù)解析式y(tǒng)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的左、右焦點(diǎn)為F1(﹣2,0),F(xiàn)2(2,0),點(diǎn)M(﹣2, ) 在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知斜率為k的直線l過橢圓C的右焦點(diǎn)F2 , 與橢圓C相交于A,B兩點(diǎn).
①若|AB|= ,求直線l的方程;
②設(shè)點(diǎn)P( ,0),證明: 為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:

ωx+φ

0

π

x

f(x)

0

3

0

﹣3

0


(1)請(qǐng)將表中數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)若將函數(shù)f(x)的圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變,得到函數(shù)g(x)的圖象,求當(dāng)x∈[﹣ , ]時(shí),函數(shù)g(x)的值域;
(3)若將y=f(x)圖象上所有點(diǎn)向左平移θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=h(x)的圖象,若=h(x)圖象的一個(gè)對(duì)稱中心為( ),求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線實(shí)軸長(zhǎng)為6,一條漸近線方程為4x﹣3y=0.過雙曲線的右焦點(diǎn)F作傾斜角為 的直線交雙曲線于A、B兩點(diǎn)
(1)求雙曲線的方程;
(2)求線段AB的中點(diǎn)C到焦點(diǎn)F的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案