【題目】下表提供了工廠技術(shù)改造后某種型號設備的使用年限x和所支出的維修費y(萬元)的幾組對照數(shù)據(jù):
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y對x呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號設備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?
參考公式:,.
【答案】(1);(2)可以預測該型號設備技術(shù)改造后,使用10年的維修費用能比技術(shù)改造前降低.
【解析】
(1)先根據(jù)平均數(shù)的公式求出,再結(jié)合題中所給的公式求出,最后寫出y關(guān)于x的線性回歸方程即可;
(2)根據(jù)(1)中的線性回歸方程,通過計算預測該型號設備技術(shù)改造后,使用10年的維修費用,然后與該工廠技術(shù)改造前該型號設備使用10年的維修費用9萬元進行比較即可.
(1)因為,,
,
所以y關(guān)于x的線性回歸方程為;
(2)由(1)可知:y關(guān)于x的線性回歸方程為,因此預測該型號設備技術(shù)改造后,使用10年的維修費用為,而改造前該型號設備使用10年的維修費用為9萬元,顯然可以預測該型號設備技術(shù)改造后,使用10年的維修費用能比技術(shù)改造前降低.
科目:高中數(shù)學 來源: 題型:
【題目】為了解某市高三數(shù)學復習備考情況,該市教研機構(gòu)組織了一次檢測考試,并隨機抽取了部分高三理科學生數(shù)學成績繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計該市此次檢測理科數(shù)學的平均成績;(精確到個位)
(2)研究發(fā)現(xiàn),本次檢測的理科數(shù)學成績近似服從正態(tài)分布(,約為),按以往的統(tǒng)計數(shù)據(jù),理科數(shù)學成績能達到自主招生分數(shù)要求的同學約占.
(ⅰ)估計本次檢測成績達到自主招生分數(shù)要求的理科數(shù)學成績大約是多少分?(精確到個位)
(ⅱ)從該市高三理科學生中隨機抽取人,記理科數(shù)學成績能達到自主招生分數(shù)要求的人數(shù)為,求的分布列及數(shù)學期望.(說明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,是橢圓上的點,且的面積為。
(1)求橢圓的方程;
(2)若斜率為且在軸上的截距為的直線與橢圓相交于兩點,若橢圓上存在點,滿足,其中是坐標原點,求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】改革開放以來,人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來,移動支付已成為主要支付方式之一.為了解某校學生上個月A,B兩種移動支付方式的使用情況,從全校所有的1000名學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計該校學生中上個月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學生中隨機抽取1人,求該學生上個月支付金額大于2000元的概率;
(Ⅲ)已知上個月樣本學生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用B的學生中隨機抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認為樣本僅使用B的學生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大提出對農(nóng)村要堅持精準扶貧,至 2020 年底全面脫貧. 現(xiàn)有扶貧工作組到某山區(qū)貧困村實施脫貧工作. 經(jīng)摸底排查,該村現(xiàn)有貧困農(nóng)戶 100 家,他們均從事水果種植, 2017 年底該村平均每戶年純收入為 1 萬元,扶貧工作組一方面請有關(guān)專家對水果進行品種改良,提高產(chǎn)量;另一方面,抽出部分農(nóng)戶從事水果包裝、銷售工作,其人數(shù)必須小于種植的人數(shù). 從 2018 年初開始,若該村抽出 5x 戶( x ∈Z,1 ≤x ≤ 9) 從事水果包裝、銷售.經(jīng)測算,剩下從事水果種植農(nóng)戶的年純收入每戶平均比上一年提高,而從事包裝銷售農(nóng)戶的年純收入每戶平均為 (3-x) 萬元(參考數(shù)據(jù): 1.13 = 1.331,1.153 ≈ 1.521,1.23 = 1.728).
(1) 至 2020 年底,為使從事水果種植農(nóng)戶能實現(xiàn)脫貧(每戶年均純收入不低于 1 萬 6 千元),至少抽出多少戶從事包裝、銷售工作?
(2) 至 2018 年底,該村每戶年均純收人能否達到 1.35 萬元?若能,請求出從事包裝、銷售的戶數(shù);若不能,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校課題組為了研究學生的數(shù)學成績與學生細心程度的關(guān)系,在本校隨機調(diào)查了100名學生進行研究.研究結(jié)果表明:在數(shù)學成績及格的50名學生中有40人比較細心,另外10人比較粗心;在數(shù)學成績不及格的50名學生中有20人比較細心,另外30人比較粗心.
(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表:
數(shù)學成績及格 | 數(shù)學成績不及格 | 合計 | |
比較細心 | 40 | ||
比較粗心 | |||
合計 | 50 | 100 |
(2)能否在犯錯誤的概率不超過0.001的前提下認為學生的數(shù)學成績與細心程度有關(guān)系?
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標方程;
(2)已知點的極坐標為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com