有三個球和一個正方體,第一個球與正方體的各個面相切,第二個球與正方體的各條棱相切,第三個球過正方體的各個頂點,則這三個球的表面積之比為 .
【答案】
分析:設(shè)出正方體的棱長,求出內(nèi)切球的半徑,與棱相切的球的半徑,外接球的半徑,然后求出三個球的表面積,即可得到結(jié)果.
解答:解:設(shè)正方體的棱長為:2,內(nèi)切球的半徑為:1,與棱相切的球的半徑就是正方體中相對棱的距離,也就是面對角線的長:
,外接球的半徑為:
;
所以這三個球的表面積之比為:4
=1:2:3
故答案為:1:2:3
點評:本題是基礎(chǔ)題,考查球與正方體的關(guān)系,內(nèi)切球、外接球的關(guān)系,考查空間想象能力,求出三個球的半徑是解題的關(guān)鍵.