5、已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0),當(dāng)x=1時(shí)有極大值4,當(dāng)x=3時(shí)有極小值0,且函數(shù)圖象過(guò)原點(diǎn),則f(x)的表達(dá)式為(  )
分析:本題是據(jù)題意求參數(shù)的題,題目中x=1時(shí)有極大值4,當(dāng)x=3時(shí)有極小值0,且函數(shù)圖象過(guò)原點(diǎn),可轉(zhuǎn)化出五個(gè)等式,擇其四建立方程.
解答:解:f′(x)=3ax2+2bx+c(a≠0),
∵x=1時(shí)有極大值4,當(dāng)x=3時(shí)有極小值0
∴f′(1)=3a+2b+c=0     ①
f′(3)=27a+6b+c=0     ②
f(1)=a+b+c+d=4      ③
又函數(shù)圖象過(guò)原點(diǎn),所以  d=0   ④
①②③④聯(lián)立得  a=1,b=-6,c=9
故函數(shù)f(x)=x3-6x2+9x
故選  C.
點(diǎn)評(píng):本小題考點(diǎn)是導(dǎo)數(shù)的運(yùn)用,考查導(dǎo)數(shù)與極值的關(guān)系,本題的特點(diǎn)是用導(dǎo)數(shù)一極值的關(guān)建立方程求參數(shù)---求函數(shù)的表達(dá)式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線(xiàn)的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案