【題目】如圖1所示,在等腰梯形中, .把沿折起,使得,得到四棱錐.如圖2所示.

(1)求證:面;

(2)求平面與平面所成銳二面角的余弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)先由平面幾何知識證明,可得,從而得,進而可得,于是,最后由面面垂直的判定定理可得結(jié)論;(2)以點為原點,以所在直線分別為軸,建立如圖所示的空間直角坐標(biāo)系,分別求出兩半平面的一個法向量,根據(jù)空間向量夾角余弦公式可得結(jié)果.

試題解析:(1)證明:在等腰梯形,可知.因為,可得.

又因為,即,則.

,可得,故.

又因為,則,

,則,

所以,

,所以,

,所以面;

(2)

設(shè),過點于點,

以點為原點,以所在直線分別為軸,建立如圖所示的空間直角坐標(biāo)系.

中,∵,

,則,

,

,則

,

,

,

設(shè)平面的法向量為,

,得,

,可得平面的法向量為,

設(shè)平面的一個法向量為,

,得,

,可得平面的一個法向量為.

設(shè)平面與平面所成銳二面角為

,

所以平面與平面所成銳二面角的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點是原點,以軸為對稱軸,且經(jīng)過點.

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)點, 在拋物線上,直線, 分別與軸交于點 , .求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解高三學(xué)生的數(shù)學(xué)成績,抽取了某班60名學(xué)生,將所得數(shù)據(jù)整理后,畫出如圖所示的頻率分布直方圖,已知從左到右各長方形高的比為2:3:5:6:3:1,則該班學(xué)生數(shù)學(xué)成績在[100,120]之間的學(xué)生人數(shù)是(

A.32
B.24
C.18
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(α)=
(1)若α為第二象限角且f(α)=﹣ ,求 的值;
(2)若5f(α)=4f(3α+2β).試問tan(2α+β)tan(α+β)是否為定值(其中α≠kπ+ ,α+β≠kπ+ ,2α+β≠kπ+ ,3α+2β≠kπ+ ,k∈Z)?若是,請求出定值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。M分為100分).

(1)求圖中的值;

(2)估計該次考試的平均分(同一組中的數(shù)據(jù)用該組的區(qū)間中點值代表);

(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關(guān)?

(參考公式: ,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為, .

1)求數(shù)列的通項公式;

2)令設(shè)數(shù)列的前項和為,;

3)令恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)圓的圓心為,直線過點且不與軸、軸垂直,且與圓, 兩點,過的平行線交直線于點.

(1)證明為定值,并寫出點的軌跡方程;

(2)設(shè)點的軌跡為曲線,直線兩點,過且與垂直的直線與圓交于兩點,求的面積之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應(yīng)量)如表所示:

產(chǎn)品
資源

甲產(chǎn)品
(每噸)

乙產(chǎn)品
(每噸)

資源限額
(每天)

煤(t

9

4

360

電力(kw·h

4

5

200

勞力(個)

3

10

300

利潤(萬元)

7

12


問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖空間四邊形ABCD,E、F、G、H分別為AB、AD、CB、CD的中點且AC=BD,AC⊥BD,試判斷四邊形EFGH的形狀,并證明.

查看答案和解析>>

同步練習(xí)冊答案