如圖,過圓O外一點M作它的一條切線,切點為A,過A點作直線AP垂直直線OM,垂足為P.
(1)證明:OM·OP=OA2;
(2)N為線段AP上一點,直線NB垂直直線ON,且交圓O于B點.過B點的切線交直線ON于K.證明:∠OKM=90°.
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長線交直線CD于點D,E、F分別為弦AB與弦AC上的點,且BC·AE=DC·AF,B、E、F、C四點共圓.
(1)證明:CA是△ABC外接圓的直徑;
(2)若DB=BE=EA,求過B、E、F、C四點的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知BC是⊙O的弦,P是BC延長線上一點,PA與⊙O相切于點A,∠ABC=25°,∠ACB=80°,求∠P的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB過圓心O,交于F(不與B重合),直線與相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC.
求證:(1);(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點E,EF垂直BA的延長線于點F.求證:
(1)∠AED=∠AFD;
(2)AB2=BE·BD-AE·AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F(xiàn)兩點,連結(jié)AE,AF分別與CD交于G、H
(Ⅰ)設(shè)EF中點為,求證:O、、B、P四點共圓
(Ⅱ)求證:OG =OH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com