已知為單調(diào)遞增的等比數(shù)列,且,,是首項(xiàng)為2,公差為的等差數(shù)列,其前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)且僅當(dāng),成立,求的取值范圍.
(1);(2)的取值范圍為

試題分析:(1)為單調(diào)遞增的等比數(shù)列,說(shuō)明,又根據(jù),
列出關(guān)于的方程組,解出,最后根據(jù)等比數(shù)列的性質(zhì),求出
(2)由題意是首項(xiàng)為2,公差為的等差數(shù)列,寫出的表達(dá)式,代入,整理得,按照當(dāng)且僅當(dāng),列出不等式組,求出的取值范圍.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045507477456.png" style="vertical-align:middle;" />為等比數(shù)列,所以
所以
所以 為方程 的兩根;
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045507477456.png" style="vertical-align:middle;" />為遞增的等比數(shù)列,       所以 從而
所以 ;            
(2)由題意可知:,
由已知可得:,
所以 ,          
當(dāng)且僅當(dāng),且時(shí),上式成立,
設(shè),則
所以
,
所以 的取值范圍為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1) 為等差數(shù)列的前項(xiàng)和,,求
(2)在等比數(shù)列中,若,求首項(xiàng)和公比

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列的前項(xiàng)和,且的最大值為8,則___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,已知,且,則下列結(jié)論中正確的有        .(填序號(hào))
①此數(shù)列的公差;

是數(shù)列的最大項(xiàng);
是數(shù)列中的最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列{an}的首項(xiàng)為3,{bn}為等差數(shù)列且bn=an+1﹣an(n∈N*),若b3=﹣2,b10=12,則a8=(  )
A.0B.3C.8D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于數(shù)列{an},a1=4,an+1=f(an)n=1,2…,則a2011等于( 。
x
1
2
3
4
5
f(x)
5
4
3
1
2
 
A.2        B.3        C.4        D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}的通項(xiàng)公式是an=n2+kn+2,若對(duì)于n∈N*,都有an+1>an成立,則實(shí)數(shù)的取值范圍( 。
A.k>0B.k>﹣1C.k>﹣2D.k>﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列為等差數(shù)列,為等比數(shù)列,,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列中,前n項(xiàng)和為S,若+=6,則S11= (   )
A.12B.33C.66 D.99

查看答案和解析>>

同步練習(xí)冊(cè)答案