已知隨機變量的值如下表所示,如果線性相關(guān)且回歸直線方程為,則實數(shù)(   )
A.B.C.D.
B

試題分析:
所以
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

根據(jù)以往的成績記錄,甲、乙兩名隊員射擊擊中目標靶的環(huán)數(shù)的頻率分布情況如圖所示

(Ⅰ)求上圖中的值;
(Ⅱ)甲隊員進行一次射擊,求命中環(huán)數(shù)大于7環(huán)的概率(頻率當作概率使用);
(Ⅲ)由上圖判斷甲、乙兩名隊員中,哪一名隊員的射擊成績更穩(wěn)定(結(jié)論不需證明).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在一次數(shù)學統(tǒng)考后,某班隨機抽取10名同學的成績進行樣本分析,獲得成績數(shù)據(jù)的莖葉圖如下.

(Ⅰ)計算樣本的平均成績及方差;
(Ⅱ)現(xiàn)從80分以上的樣本中隨機抽出2名學生,求抽出的2名學生的成績分別在上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某高校在2013年的自主招生考試成績中隨機抽取40名學生的筆試成績,按成績共分成五組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上(含85分)的學生為“優(yōu)秀”,成績小于85分的學生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學生才能獲得面試資格.
(Ⅰ)求出第4組的頻率,并補全頻率分布直方圖;
(Ⅱ)根據(jù)樣本頻率分布直方圖估計樣本的中位數(shù);
(Ⅲ)如果用分層抽樣的方法從“優(yōu)秀”和“良好” 的學生中共選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若樣本的方差是2,則樣本的方差是            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖是某學校抽取的個學生體重的頻率分布直方圖,已知圖中從左到右的前個小組的頻率之比為,第小組的頻數(shù)為,則的值       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某射擊選手連續(xù)射擊5槍命中的環(huán)數(shù)分別為:9.7,9.9,10.1,10.2,10.1,則這組數(shù)據(jù)的方差為__________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某班同學利用寒假在5個居民小區(qū)內(nèi)選擇兩個小區(qū)逐戶進行一次“低碳生活習慣”的調(diào)查,以計算每戶每月的碳排放量.若月排放量符合低碳標準的稱為“低碳族”,否則稱為“非低碳族”.若小區(qū)內(nèi)有至少的住戶屬于“低碳族”,則稱這個小區(qū)為“低碳小區(qū)”,否則稱為“非低碳小區(qū)”.已知備選的5個居民小區(qū)中有三個非低碳小區(qū),兩個低碳小區(qū).

(1)求所選的兩個小區(qū)恰有一個為“非低碳小區(qū)”的概率;
(2)假定選擇的“非低碳小區(qū)”為小區(qū),調(diào)查顯示其“低碳族”的比例為,數(shù)據(jù)如圖1所示,經(jīng)過同學們的大力宣傳,三個月后,又進行了一次調(diào)查,數(shù)據(jù)如圖2所示,問這時小區(qū)是否達到“低碳小區(qū)”的標準?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在一次考試中,5名學生的數(shù)學和物理成績?nèi)缦卤恚?已知學生的數(shù)學和物理成績具有線性相關(guān)關(guān)系)
學生的編號i
1
2
3
4
5
數(shù)學成績x
80
75
70
65
60
物理成績y
70
66
68
64
62
現(xiàn)已知其線性回歸方程為,則根據(jù)此線性回歸方程估計數(shù)學得90分的同學的物理成績?yōu)?u>              .(四舍五入到整數(shù))

查看答案和解析>>

同步練習冊答案