精英家教網 > 高中數學 > 題目詳情
已知長方形ABCD, AB=2, BC="1." 以AB的中點為原點建立如圖8所示的平面直角坐標系.
(Ⅰ)求以A、B為焦點,且過C、D兩點的橢圓的標準方程;
(Ⅱ)過點P(0,2)的直線交(Ⅰ)中橢圓于M,N兩點,是否存在直線,使得以弦MN為直徑的圓恰好過原點?若存在,求出直線的方程;若不存在,說明理由.
(Ⅰ) (Ⅱ)存在過P(0,2)的直線:使得以弦MN為直徑的圓恰好過原點
(Ⅰ)由題意可得點A,B,C的坐標分別為.……1分
設橢圓的標準方程是.……2分
……4分
.……5分
橢圓的標準方程是……6分
(Ⅱ)由題意直線的斜率存在,可設直線的方程為.……7分
設M,N兩點的坐標分別為
聯(lián)立方程: 
消去整理得,
……9分
若以MN為直徑的圓恰好過原點,則,所以,……10分
所以,,

所以,
……11分  得……12分
所以直線的方程為,或.……13分
所以存在過P(0,2)的直線:使得以弦MN為直徑的圓恰好過原點. ……14分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知定圓圓心為A,動圓M過點B(1,0)且和圓A相切,動圓的圓心M的軌跡記為C.
(I)求曲線C的方程;
(II)若點為曲線C上一點,求證:直線與曲線C有且只有一個交點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)已知橢圓E:(其中),直 線L與橢圓只有一個公共點T;兩條平行于y軸的直線分別過橢圓的左、右焦點F1、F2,且直線L分別相交于A、B兩點.

(Ⅰ)若直線L在軸上的截距為,求證:直線L斜率的絕對值與橢圓E的離心率相等;(Ⅱ)若的最大值為1200,求橢圓E的方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知為橢圓的左右焦點,拋物線以為頂點,為焦點,設為橢圓與拋物線的一個交點,橢圓離心率為,且,求的值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓C: 的焦點為F1(0,c)、F2(0,一c)(c>0),拋物線的焦點與F1重合,過F2的直線l與拋物線P相切,切點在第一象限,且與橢圓C相交于A、B兩點,且
(I)求證:切線l的斜率為定值;
(Ⅱ)若拋物線P與直線l及y軸圍成的圖形面積為,求拋物線P的方程;
(III)當時,求橢圓離心率e的取值范圍。


 
 

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知A.B是橢圓上兩點,O是坐標原點,定點,向量在向量方向上的投影分別是m.n ,且7mn ,動點P滿足
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)設過點E的直線l與C交于兩個不同的點M.N,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓與直線交于,兩點,過原點與線段中點的直線的斜率為,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓+y2=1中斜率為1的平行弦的中點的軌跡方程是_________________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若橢圓經過原點,且焦點F1(1,0),F(xiàn)(3,0),則其離心率為。  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案