【題目】如圖,在四棱錐中,底面為直角梯形,,,,,,為線段的中點.
(Ⅰ)求直線與平面所成角的余弦值;
(Ⅱ)求二面角的大。
(Ⅲ)若在段上,且直線與平面相交,求的取值范圍.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)
【解析】
以為坐標原點,建立空間直角坐標系:
(Ⅰ)求得直線的方向向量和平面的法向量,通過向量的夾角求得線面角的夾角;
(Ⅱ)求出平面的法向量,利用向量法求二面角的大小;
(Ⅲ)設出點坐標,根據(jù)的方向向量和法向量不垂直,即可求得范圍.
(Ⅰ) 因為,
所以;
又因為,,
所以,
因此.
以為原點建立空間直角坐標系,如圖所示.
則,,,
,,.
所以,,.
設平面的法向量,
由得:
令,則
設直線與平面所成角為,
則有=
所以
即:直線與平面所成角的余弦值為.
(Ⅱ)同理可得:平面的法向量,
則有
因為二面角的平面角為鈍角,
所以二面角的大小為.
(Ⅲ)設,
由得:.
則,
又因為直線與平面相交,
所以.
即: , 解得:
所以的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)是定義在上的單調(diào)函數(shù),且對于任意正數(shù)有,已知,若一個各項均為正數(shù)的數(shù)列滿足,其中是數(shù)列的前項和,則數(shù)列中第18項( )
A. B. 9 C. 18 D. 36
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 .
(1)若是上的增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個極值點,判斷函數(shù)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)當時,求函數(shù)的單調(diào)增區(qū)間;
(2)當時,求函數(shù)在區(qū)間上的最大值;
(3)對任意,恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是拋物線的頂點,,是上的兩個動點,且.
(1)判斷點是否在直線上?說明理由;
(2)設點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人獨立地對某一技術難題進行攻關.甲能攻克的概率為,乙能攻克的概率為,丙能攻克的概率為.
(1)求這一技術難題被攻克的概率;
(2)現(xiàn)假定這一技術難題已被攻克,上級決定獎勵萬元.獎勵規(guī)則如下:若只有一人攻克,則此人獲得全部獎金萬元;若只有兩人攻克,則獎金獎給此二人,每人各得萬元;若三人均攻克,則獎金獎給此三人,每人各得萬元.設乙、丙兩人得到的獎金數(shù)的和為X,求X的分布列和均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】考察所有排列,將每種排列視為一個元有序?qū)崝?shù)組,設且,設為的最大項,其中.記數(shù)組為.例如,時,;時,.若數(shù)組中的不同元素個數(shù)為2.
(1)若,求所有元有序?qū)崝?shù)組的個數(shù);
(2)求所有元有序?qū)崝?shù)組的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線 (為參數(shù)), (為參數(shù))
(Ⅰ)將的方程化為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若上的點對應的參數(shù)為,為上的動點,求中點到直線 (為參數(shù))距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com