(2013•永州一模)在極坐標(biāo)系中,曲線C1:ρ=-2cosθ與曲線C2:ρ=sinθ的圖象的交點(diǎn)個(gè)數(shù)為
2
2
分析:把兩個(gè)曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,求出兩個(gè)圓的圓心距d=
(0+1)2+(1-0)2
=
2
,大于兩圓的半徑
之差而小于半徑之和,可得兩個(gè)圓相交,從而得出結(jié)論.
解答:解:曲線C1:ρ=-2cosθ即ρ2=-2ρcosθ,即 x2+y2=-2x,即(x+1)2+y2=1,
表示以(-1,0)為圓心,半徑等于1的圓.
曲線C2:ρ=sinθ,即ρ2=2ρsinθ,化為直角坐標(biāo)方程為 x2+y2=2y,即 x2+(y-1)2=1,
表示以(0,1)為圓心,半徑等于1的圓.
兩個(gè)圓的圓心距d=
(0+1)2+(1-0)2
=
2
,大于兩圓的半徑之差而小于半徑之和,故兩個(gè)圓相交,
故兩個(gè)曲線交點(diǎn)的個(gè)數(shù)為2,
故答案為 2.
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,兩圓的位置關(guān)系的判斷方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)已知函數(shù)f(x)=mlnx+
1
x
,(其中m為常數(shù))
(1)試討論f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)令函數(shù)h(x)=f(x)+
1
m
lnx
-x.當(dāng)m∈[2,+∞)時(shí),曲線y=h(x)上總存在相異兩點(diǎn)P(x1,f(x1))、Q(x2,f(x2)),使得過P、Q點(diǎn)處的切線互相平行,求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)提高大橋的車輛通行能力可改善整個(gè)城市的交通狀況.一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù).當(dāng)車流密度不超過50輛/千米時(shí),車流速度為30千米/小時(shí).研究表明:當(dāng)50<x≤200時(shí),車流速度v與車流密度x滿足v(x)=40-
k
250-x
.當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí).
(Ⅰ)當(dāng)0<x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(Ⅱ)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x•v(x)可以達(dá)到最大,并求出最大值.(精確到個(gè)位,參考數(shù)據(jù)
5
≈2.236

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)已知A,B是圓C(為圓心)上的兩點(diǎn),|
AB
|=2,則
AB
AC
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)設(shè)集合A={x|-1<x<2},B={x|x2≤1},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•永州一模)“x≠3”是“|x-3|>0”的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案