【題目】為響應(yīng)陽光體育運(yùn)動的號召,某縣中學(xué)生足球活動正如火如荼地展開,該縣為了解本縣中學(xué)生的足球運(yùn)動狀況,根據(jù)性別采取分層抽樣的方法從全縣24000名中學(xué)生(其中男生14000人,女生10000人)中抽取120名,統(tǒng)計他們平均每天足球運(yùn)動的時間,如下表:(平均每天足球運(yùn)動的時間單位為小時,該縣中學(xué)生平均每天足球運(yùn)動的時間范圍是).

(1)請根據(jù)樣本估算該校男生平均每天足球運(yùn)動的時間(結(jié)果精確到0.1);

(2)若稱平均每天足球運(yùn)動的時間不少于2小時的學(xué)生為“足球健將”,低于2小時的學(xué)生為“非足球健將”.

①請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷,能否有90%的把握認(rèn)為是否為“足球健將”與性別有關(guān)?

②若在足球運(yùn)動時間不足1小時的男生中抽取2名代表了解情況,求這2名代表都是足球運(yùn)動時間不足半小時的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.05

0.40

0.25

0.15

0.10

0.05

0.025

0.010

3.841

0.708

1.323

2.072

2.706

3.841

5.024

6.635

【答案】(Ⅰ)小時;(Ⅱ)①見解析; ②

【解析】試題分析:(Ⅰ)由分層抽樣求出男生抽取的人數(shù),女生抽取人數(shù),然后求解該校男生平均每天運(yùn)動的時間.
(Ⅱ)①填寫表格,求解的觀測值,推出在犯錯誤的概率不超過0.05的前提下,‘運(yùn)動達(dá)人’與性別有關(guān)”的結(jié)果②根據(jù)古典概型公式求概率即可.

試題解析:(Ⅰ)由分層抽樣得:男生抽取的人數(shù)為人,女生抽取人數(shù)為人,故5,2.

則該校男生平均每天足球運(yùn)動的時間為,

故該校男生平均每天足球運(yùn)動的時間約為小時;

(Ⅱ)①由表格可知:

足球健將

非足球健將

總 計

男 生

15

55

70

女 生

5

45

50

總 計

20

100

120

的觀測值

因此有%的把握認(rèn)為是否為“足球健將”與性別有關(guān).

②記不足半小時的兩人為a、b,足球運(yùn)動時間在內(nèi)的三人為1,2,3,則總的基本事件個數(shù)是(ab),(a1),(a2),(a3),(1),(b2),(b3),(12),(13),(23),其中2名代表足球運(yùn)動時間都不足半小時的是(ab),∴

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建全國文明城市,某區(qū)向各事業(yè)行政單位征集“文明過馬路”義務(wù)督導(dǎo)員.從符合條件的600名志愿者中隨機(jī)抽取100名,按年齡作分組如下:[20,25) , [25,30) , [30,35), [35,40) , [40,45] ,并得到如下頻率分布直方圖.

(Ⅰ)求圖中 的值,并根據(jù)頻率分布直方圖統(tǒng)計這600名志愿者中年齡在[30.40)的人數(shù);

(Ⅱ)在抽取的100名志愿者中按年齡分層抽取10名參加區(qū)電視臺“文明伴你行”節(jié)目錄制,再從這10名志愿者中隨機(jī)選取3名到現(xiàn)場分享勸導(dǎo)制止行人闖紅燈的經(jīng)歷,記這3名志愿者中年齡不低于35歲的人數(shù)為 ,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)設(shè),當(dāng)時,求函數(shù)的定義域,判斷并證明函數(shù)的奇偶性;

(2)是否存在實數(shù),使得函數(shù)遞減,并且最小值為1,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)試判斷函數(shù)的單調(diào)性;

2)設(shè),求上的最大值;

3)試證明:對任意,不等式都成立(其中是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與函數(shù)的圖像相切于點

(1)求實數(shù)的值;

(2)證明除切點外,直線總在函數(shù)的圖像的上方;

(3)設(shè)是兩兩不相等的正實數(shù),且成等比數(shù)列,試判斷的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高二年級選學(xué)生物的學(xué)生的某次測試成績進(jìn)行了統(tǒng)計,隨機(jī)抽取了名學(xué)生的成績作為樣,根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方如下

(1)求表中的值和頻率分布直方圖中的值;

(2)如果用分層抽樣的方法,從樣本成績在的學(xué)生中共抽取人,再從人中選人,

求這人成績在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)設(shè)a,b是兩個不相等的正數(shù),若,用綜合法證明:a+b>4

(2)已知a>b>c,且a+b+c=0,用分析法證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下圖所示的幾何體中,底面為正方形,平面,且,為線段的中點.

(1)證明:平面

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標(biāo)號分別為1,2,3;藍(lán)色卡片兩張,標(biāo)號分別為1,2.

(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率;

(2)現(xiàn)袋中再放入一張標(biāo)號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標(biāo)號之和小于4的概率.

查看答案和解析>>

同步練習(xí)冊答案