(本小題滿分12分)
已知函數(shù)f(x)=x3-ax2,其中a為實(shí)常數(shù).
(1)設(shè)當(dāng)x∈(0,1)時,函數(shù)y = f(x)圖象上任一點(diǎn)P處的切線的斜線率為k,若k≥-1,求a的取值范圍
(2)當(dāng)x∈[-1,1]時,求函數(shù)y=f(x)+a(x2-3x)的最大值.
(1) (-∞,].
(2) g(x)
【解析】解:(1)
由k≥-1,得3x2-2ax+1≥0,即a≤恒成立
∴a≤(3x+)min
∵當(dāng)x∈(0,1)時,3x+≥2=2,當(dāng)且僅當(dāng)x=時取等號.
∴(3x+)min =.故a的取值范圍是(-∞,].
(2)設(shè)g(x)=f(x)+a(x2-3x)=x3-3ax,x∈[-1,1]則
g′(x)=3x2-3a=3(x2-a).
①當(dāng)a≥1時,∴g′(x)≤0.從而g(x)在[-1,1]上是減函數(shù).
∴g(x)的最大值為g(-1)=3a-1.
②當(dāng)0<a<1時,g′(x)=3(x+)(x-).
由g′(x) >0得,x>或x<-:由g′(x)< 0得,-<x<.
∴g(x)在[-1,-],[,1]上增函數(shù),在[-,]上減函數(shù).
∴g(x)的極大值為g(-)=2a.
由g(-)-g(1)=2a+3a-1=(+1)·(2-1)知
當(dāng)2-1<0,即0≤a<時,g(-)<g(1)
∴g(x)=g(1)=1-3a.
當(dāng)2-1≥0,即<a<1時,g(-)≥g(1)
∴g(x)=g(-)=2a.
③當(dāng)a≤0時,g′(x)≥0,從而g(x)在[-1,1]上是增函數(shù).
∴g(x)=g(1)=1-3a
綜上分析,g(x)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com