已知,,點(diǎn)滿足,記點(diǎn)的軌跡為,過點(diǎn)作直線與軌跡交于兩點(diǎn),過作直線的垂線、,垂足分別為。
(1)求軌跡的方程;
(2)設(shè)點(diǎn),求證:當(dāng)取最小值時(shí),的面積為
(1)由|PF1|-|PF2|=2<|F1F2|知,點(diǎn)P的軌跡S是以F1、F2為焦點(diǎn)的雙曲線右支.
c=2,2a=2,∴b2=3.故軌跡S的方程為x2=1 (x≥1)   …….……4分

(2)當(dāng)直線l的斜率存在時(shí),設(shè)直線方程為yk(x-2),P(x1,y1),Q(x2,y2),與雙曲線方程聯(lián)立消y得(k2-3)x2-4k2x+4k2+3=0.                      ……5分

 

 
  解得k2>3.…… 7分

 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓  ,稱圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿足
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)過點(diǎn)P作直線,使得直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.求出的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正四面體P-ABC中,M為ABC內(nèi)(含邊界)一動(dòng)點(diǎn),且到三個(gè)側(cè)面PAB,PBC,PCA的距離成等差數(shù)列,則點(diǎn)M的軌跡是(  )
A.一條線段B.橢圓的一部分
C.雙曲線的一部分D.拋物線的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖:O方程為,點(diǎn)P在圓上,點(diǎn)Dx軸上,點(diǎn)MDP延長(zhǎng)線上,Oy軸于點(diǎn)N,.且
(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè),若過F1的直線交(I)中曲線CA、B兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)到雙曲線的漸近線的距離為(   )
A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

△ABC中,A(-2,0),B(2,0),則滿足△ABC的周長(zhǎng)為8的點(diǎn)C的軌跡方程為
_______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)如圖,在中,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,點(diǎn)軸的正半軸上,,在的延長(zhǎng)線上取一點(diǎn),使.
(Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡;
(Ⅱ)自點(diǎn)引直線與軌跡交于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)
記為,設(shè),點(diǎn)的坐標(biāo)為.
(1)求證:;
(2)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)雙曲線的漸近線與圓相切,則=        .

查看答案和解析>>

同步練習(xí)冊(cè)答案