(07年天津卷文)設(shè)是定義在上的奇函數(shù),且當(dāng)時(shí),,若對(duì)任意的,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年天津卷文)設(shè)函數(shù),則( )
A.在區(qū)間上是增函數(shù) B.在區(qū)間上是減函數(shù)
C.在區(qū)間上是增函數(shù) D.在區(qū)間上是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年天津卷文)(14分)
設(shè)函數(shù)(),其中.
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的極大值和極小值;
(Ⅲ)當(dāng)時(shí),證明存在,使得不等式對(duì)任意的恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年天津卷文)(14分)
設(shè)橢圓的左、右焦點(diǎn)分別為是橢圓上的一點(diǎn),,原點(diǎn)到直線的距離為.
(Ⅰ)證明;
(Ⅱ)求使得下述命題成立:設(shè)圓上任意點(diǎn)處的切線交橢圓于,兩點(diǎn),則.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com