【題目】如圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針?lè)较驖L動(dòng),M和N是小圓的一條固定直徑的兩個(gè)端點(diǎn).那么,當(dāng)小圓這樣滾過(guò)大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是(

A.
B.
C.
D.

【答案】A
【解析】解:如圖,由題意可知,小圓O1總與大圓O相內(nèi)切,且小圓O1總經(jīng)過(guò)大圓的圓心O.
設(shè)某時(shí)刻兩圓相切于點(diǎn)A,此時(shí)動(dòng)點(diǎn)M所處位置為點(diǎn)M′,則大圓圓弧 與小圓點(diǎn)M轉(zhuǎn)過(guò)的圓弧相等.
以切點(diǎn)A在如圖上運(yùn)動(dòng)為例,記直線(xiàn)OM與此時(shí)小圓O1的交點(diǎn)為M1 , 記∠AOM=θ,則∠OM1O1=∠M1OO1=θ,故∠M1O1A=∠M1OO1+∠OM1O1=2θ.
大圓圓弧 的長(zhǎng)為l1=θ×1=θ,小圓圓弧 的長(zhǎng)為l2=2θ× =θ,即l1=l2
∴小圓的兩段圓弧 與圓弧 長(zhǎng)相等,故點(diǎn)M1與點(diǎn)M′重合,
即動(dòng)點(diǎn)M在線(xiàn)段MO上運(yùn)動(dòng),同理可知,此時(shí)點(diǎn)N在線(xiàn)段OB上運(yùn)動(dòng).
點(diǎn)A在其他象限類(lèi)似可得,M、N的軌跡為相互垂直的線(xiàn)段.
觀察各選項(xiàng),只有選項(xiàng)A符合.故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某程序框圖如圖所示,當(dāng)輸入50時(shí),則該程序運(yùn)算后輸出的結(jié)果是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一顆質(zhì)地均勻的骰子(一種各個(gè)面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點(diǎn)數(shù)之和小于10的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校1800名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,抽取其中50名學(xué)生組成一個(gè)樣本,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組……,第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)請(qǐng)估計(jì)學(xué)校1800名學(xué)生中,成績(jī)屬于第四組的人數(shù);

(2)若成績(jī)小于15秒認(rèn)為良好,求該樣本中在這次百米測(cè)試中成績(jī)良好的人數(shù);

(3)請(qǐng)根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)、平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為 (α為參數(shù))
(1)求曲線(xiàn)C的普通方程;
(2)在以O(shè)為極點(diǎn),x正半軸為極軸的極坐標(biāo)系中,直線(xiàn)l方程為 ρsin( ﹣θ)+1=0,已知直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:第二象限角比第一象限角大;設(shè)是第二象限角,則;三角形的內(nèi)角是第一象限角或第二象限角;函數(shù)是最小正周期為的周期函數(shù);△ABC中,若,A>B.其中正確的是___________ (寫(xiě)出所有正確說(shuō)法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線(xiàn) 的左、右焦點(diǎn)分別為F1、F2,直線(xiàn)l過(guò)F2且與雙曲線(xiàn)交于A、B兩點(diǎn).
(1)若l的傾斜角為 , 是等邊三角形,求雙曲線(xiàn)的漸近線(xiàn)方程;
(2)設(shè) ,若l的斜率存在,且|AB|=4,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(Ⅰ)當(dāng)時(shí),解不等式;

(Ⅱ)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(Ⅲ)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)三個(gè)向量:.

(Ⅰ)若,求實(shí)數(shù)的值;

(Ⅱ)設(shè),且滿(mǎn)足,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案