某市為了解社區(qū)群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個行政區(qū)抽出6個社區(qū)進行調查.已知A,B,C行政區(qū)中分別有12,18,6個社區(qū).
(1)求從A,B,C三個行政區(qū)中分別抽取的社區(qū)個數(shù);
(2)若從抽得的6個社區(qū)中隨機的抽取2個進行調查結果的對比,求抽取的2個社區(qū)中至少有一個來自A行政區(qū)的概率.

(1)2,3,1(2)

解析試題分析:
(1)根據(jù)分層抽樣的原理,在抽樣的過程中保持每個個體被抽到的概率相等,按照人數(shù)的比列把抽樣的人數(shù)分到相應的層,則有,即可求出每層應該抽取的人數(shù).
(2)首先對抽取的6個社區(qū)進行編號,,,則列出從6個社區(qū)中選取兩個的所有基本事件數(shù)為15,在所有的基本事件中找出滿足至少有一個來自A社區(qū)的基本事件數(shù)為9,再根據(jù)古典概型的概率計算公式可以得到該事件的概率為.
試題解析:
(1)社區(qū)總數(shù)為12+18+6=36,樣本容量與總體中的個體數(shù)比為
所以從,三個行政區(qū)中應分別抽取的社區(qū)個數(shù)為2,3,1.     4分
(2)設為在行政區(qū)中抽得的2個社區(qū),為在B行政區(qū)中抽得的3個社區(qū),為在行政區(qū)中抽得的社區(qū),在這6個社區(qū)中隨機抽取2個,全部可能的結果有
共有15種.           7分
設事件“抽取的2個社區(qū)至少有1個來自行政區(qū)”為事件,則事件所包含的
所有可能的結果有:

共有9種,                  10分
以這2個社區(qū)中至少有1個來自行政區(qū)的概率為     12分
考點:分層抽樣古典概型

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

根據(jù)以往的經驗,某工程施工期間的降水量X(單位:mm)對工期的影響如下表:

降水量X




工期延誤天數(shù)
0
2
6
10
歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9.求:
(1)工期延誤天數(shù)的均值與方差;(2)在降水量X至少是300的條件下,工期延誤不超過6天的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在0,1,2,3,…,9這十個自然數(shù)中,任取三個不同的數(shù)字.將取出的三個數(shù)字按從小到大的順序排列,設ξ為三個數(shù)字中相鄰自然數(shù)的組數(shù)(例如:若取出的三個數(shù)字為0,1,2,則相鄰的組為0,1和1,2,此時ξ的值是2),求隨機變量ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市公租房的房源位于三個片區(qū),設每位申請人只申請其中一個片區(qū)的房源,且申請其中任一個片區(qū)的房源是等可能的,求該市的任4位申請人中:
(1)恰有2人申請片區(qū)房源的概率;
(2)申請的房源所在片區(qū)的個數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某商店試銷某種商品20天,獲得如下數(shù)據(jù):

日銷售量(件)
0
1
2
3
頻數(shù)
1
5
9
5
試銷結束后(假設該商品的日銷售量的分布規(guī)律不變).設某天開始營業(yè)時由該商品3件,當天營業(yè)結束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當天進貨補充至3件,否則不進貨,將頻率視為概率.
(1)求當天商店不進貨的概率;
(2)記X為第二天開始營業(yè)時該商品視為件數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校舉行中學生“日常生活小常識”知識比賽,比賽分為初賽和復賽兩部分,初賽采用選手從備選題中選一題答一題的方式進行;每位選手最多有5次答題機會,選手累計答對3題或答錯3題即終止比賽,答對3題者直接進入復賽,答錯3題者則被淘汰.已知選手甲答對每個題的概率均為,且相互間沒有影響.
(1)求選手甲進入復賽的概率;
(2)設選手甲在初賽中答題的個數(shù)為,試求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個口袋中有個白球和個紅球(,且),每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.
(1)試用含的代數(shù)式表示一次摸球中獎的概率;
(2)若,求三次摸球恰有一次中獎的概率;
(3)記三次摸球恰有一次中獎的概率為,當為何值時,取最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在高中“自選模塊”考試中,某考場的每位同學都選了一道數(shù)學題,第一小組選《數(shù)學史與不等式選講》的有1人,選《矩陣變換和坐標系與參數(shù)方程》的有5人,第二小組選《數(shù)學史與不等式選講》的有2人,選《矩陣變換和坐標系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(1)求選出的4人均為選《矩陣變換和坐標系與參數(shù)方程》的概率;
(2)設X為選出的4個人中選《數(shù)學史與不等式選講》的人數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標著號碼1,另一個球標著號碼2,現(xiàn)從A、B、C三個箱子中各摸出1個球.
(1) 若用數(shù)組(x,y,z)中的x、y、z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;
(2) 如果猜測摸出的這三個球的號碼之和,猜中有獎,那么猜什么數(shù)獲獎的可能性最大?請說明理由.

查看答案和解析>>

同步練習冊答案