已知函數(shù)f(x)=x3+x,?m∈[-2,2],f(mx-2)+f(x)<0恒成立,則x的取值范圍為( 。
A、(-2,
2
3
B、(
2
3
,2)
C、(-2,2)
D、(-3,2)
考點(diǎn):函數(shù)恒成立問(wèn)題
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)f(x)的單調(diào)性和奇偶性的關(guān)系將不等式恒成立進(jìn)行等價(jià)轉(zhuǎn)化,即可得到結(jié)論.
解答:解:∵f(x)=x3+x,
∴f(x)是奇函數(shù),且在R上單調(diào)遞增,
由f(mx-2)+f(x)<0,
得f(mx-2)<-f(x)=f(-x),
此時(shí)應(yīng)有mx-2<-x⇒xm+x-2<0,
對(duì)所有m∈[-2,2]恒成立,
令f(m)=xm+x-2,此時(shí)只需
f(-2)<0
f(2)<0

-x-2<0
3x-2<0
,即
x>-2
x<
2
3
,
解得-2<x<
2
3

故選:A.
點(diǎn)評(píng):本題主要考查不等式恒成立問(wèn)題,利用函數(shù)的奇偶性和單調(diào)性是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校數(shù)學(xué)教研組為了解學(xué)生學(xué)習(xí)數(shù)學(xué)的情況,采用分層抽樣的方法從高一600人、高二780人、高三n人中,抽取35人進(jìn)行問(wèn)卷調(diào)查,已知高二被抽取的人數(shù)為13人,則n等于(  )
A、660B、720
C、780D、800

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)C:y=
x
和直線(xiàn):x-2y=0由C與圍成封閉圖形記為M.
(1)求M的面積;
(2)若M繞x軸旋轉(zhuǎn)一周,求由M圍成的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)
x=2pt2
y=2pt
(t為參數(shù),p為正常數(shù))
上的兩點(diǎn)M,N對(duì)應(yīng)的參數(shù)分別為t1和t2,且t1+t2=0,那么|MN|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,其中俯視圖是半圓,則該幾何體的表面積為( 。
A、
2
+
3
B、π+
3
C、
2
D、
2
+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是R上的減函數(shù),若對(duì)任意x∈R,f(x2-a)<f(1)恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、(-1,+∞)
B、〔-1,+∞)
C、(-∞,-1〕
D、(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下表是某供應(yīng)商提供給銷(xiāo)售商的產(chǎn)品報(bào)價(jià)單.
一次購(gòu)買(mǎi)件數(shù)1~1011~5051~100101~300300以上
每件價(jià)格(單位:元)3732302725
某銷(xiāo)售商有現(xiàn)金2900元,則對(duì)多可購(gòu)買(mǎi)這種產(chǎn)品
 
件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面斜坐標(biāo)系xOy中,x軸方向水平向右,y軸指向左上方,且∠x(chóng)Oy=
3
.平面上任一點(diǎn)P關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的,若
OP
=x
e1
+y
e2
(其中向量
e1
,
e2
分別是與x軸、y軸同方向的單位向量),則P點(diǎn)的斜坐標(biāo)為(x,y),則以O(shè)為頂點(diǎn),F(xiàn)(1,0)為焦點(diǎn),x軸為對(duì)稱(chēng)軸的拋物線(xiàn)方程為(  )
A、3y2-16x+8y=0
B、3y2+16x+8y=0
C、3y2-16x-8y=0
D、3y2+16x-8y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)的方程為y2=2px(p>0),焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),A是該拋物線(xiàn)上一點(diǎn),
FA
與x軸的正方向的夾角為60°,若△AOF的面積為
3
,則p的值為( 。
A、2
B、2
3
C、2或2
3
D、2或
2

查看答案和解析>>

同步練習(xí)冊(cè)答案