已知,為圓的直徑,為垂直的一條弦,垂足為,弦.
(1)求證:、、四點共圓;
(2)若,求線段的長.

(1)詳見解析;(2).

解析試題分析:(1)證明,利用四邊形對角互補證明、、四點共圓;
(2)利用(1)中的結(jié)論結(jié)合割線定理得到,然后在中利用射影定理得到從而計算出的值.
(1)如圖,連結(jié),由為圓的直徑可知

,所以,
因此、、四點共圓;
(2)連結(jié),由、、四點共圓得,
,,所以
因為在中,所以.
考點:1.四點共圓;2.割線定理;3.射影定理

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,DC是∠ACB的平分線交AE于點F,交AB于D點.

(1)求∠ADF的度數(shù);
(2)AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,CD是∠ACB的角平分線,△ADC的外接圓交BC于點E,AB=2AC
(1)求證:BE=2AD;
(2)當AC=3,EC=6時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓O的內(nèi)接△ABC中,D為BC上一點,且△ADC為正三角形,點E為BC的延長線上一
點,AE為圓O的切線,求證:CD2=BD·EC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AB是圓O的直徑,弦BD、CA的延長線相交于點E,EF垂直BA的延長線于點F.求證:∠DEA=∠DFA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AC⊥BD,垂足為E,∠ABC=45°,過E作AD的垂線交AD于F,交BC于G,過E作AD的平行線交AB于H.求證:FG2=AF·DF+BG·CG+AH·BH.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)證明:B,D,H,E四點共圓;
(2)證明:CE平分∠DEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

(幾何證明選講選做題)在梯形中,,,點、分別在上,且,若,則的長為     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在矩形ABCD中,AB>·AD,E為AD的中點,連結(jié)EC,作EF⊥EC,且EF交AB于F,連結(jié)FC.設(shè)=k,是否存在實數(shù)k,使△AEF、△ECF、△DCE與△BCF都相似?若存在,給出證明;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案