【題目】已知f(x)是定義在R上的奇函數(shù),滿足f(﹣ +x)=f( +x),當x∈[0, ]時,f(x)=ln(x2﹣x+1),則函數(shù)f(x)在區(qū)間[0,6]上的零點個數(shù)是( )
A.3
B.5
C.7
D.9
【答案】D
【解析】解:∵f(x)是定義在R上的奇函數(shù),滿足f(﹣ +x)=f( +x),
∴f( )=f( ),可得f(x+3)=f(x),
函數(shù)f(x)的周期為3,
∵當x∈[0, ]時,f(x)=ln(x2﹣x+1),
令f(x)=0,則x2﹣x+1=1,解得x=0或1,
又∵函數(shù)f(x)是定義域為R的奇函數(shù),
∴在區(qū)間∈[﹣ , ]上,有f(﹣1)=﹣f(1)=0,f(0)=0.
由f(﹣ +x)=f( +x),取x=0,得
f(﹣ )=f( ),得f( )=f(﹣ )=0,
∴f(﹣1)=f(1)=f(0)=f( )=f(﹣ )=0.
又∵函數(shù)f(x)是周期為3的周期函數(shù),
∴方程f(x)=0在區(qū)間[0,6]上的解有0,1, ,2,3,4, ,5,6.
共9個,
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣2|x+1|.
(1)求f(x)的最大值;
(2)若存在x∈[﹣2,1]使不等式a+1>f(x)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設a,b是不相等的兩個正數(shù),且blna﹣alnb=a﹣b,給出下列結論:①a+b﹣ab>1;②a+b>2;③ + >2.其中所有正確結論的序號是( )
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O為極點,x正半軸為極軸的極坐標系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點,求|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的焦點和上頂點分別為F1、F2、B,定義:△F1BF2為橢圓C的“特征三角形”,如果兩個橢圓的特征三角形是相似三角形,那么稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比,已知點 是橢圓 的一個焦點,且C1上任意一點到它的兩焦點的距離之和為4.
(1)若橢圓C2與橢圓C1相似,且C2與C1的相似比為2:1,求橢圓C2的方程;
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任意一點,若點Q是直線y=nx與拋物線 異于原點的交點,證明:點Q一定在雙曲線4x2﹣4y2=1上;
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb , 是否存在正方形ABCD,(設其面積為S),使得A、C在直線l上,B、D在曲線Cb上?若存在,求出函數(shù)S=f(b)的解析式及定義域;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)當m=7時,求函數(shù)f(x)的定義域;
(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a1=2,且a1 , a2 , a3成等比數(shù)列.
(1)求數(shù)列{an}的通頂公式.
(2)記Sn為數(shù)列{an}的前n項和,是否存在正整數(shù)n.使得Sn>60n+800?若存在,求n的最小值:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《九章算術》的論割圓術中有:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”它體現(xiàn)了一種無限與有限的轉化過程.比如在表達式1+ 中“…”即代表無數(shù)次重復,但原式卻是個定值,它可以通過方程1+ =x求得x= .類比上述過程,則 =( )
A.3
B.
C.6
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人組成“星隊”參加猜成語活動,每輪活動由甲、乙各猜一個成語,在一輪活動中,如果兩人都猜對,則“星隊”得3分;如果只有一個人猜對,則“星隊”得1分;如果兩人都沒猜對,則“星隊”得0分.已知甲每輪猜對的概率是 ,乙每輪猜對的概率是 ;每輪活動中甲、乙猜對與否互不影響.各輪結果亦互不影響.假設“星隊”參加兩輪活動,求:
(I)“星隊”至少猜對3個成語的概率;
(II)“星隊”兩輪得分之和為X的分布列和數(shù)學期望EX.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com