(本題15分)已知a是實(shí)數(shù),函數(shù).
(Ⅰ)若f1(1)=3,求a的值及曲線在點(diǎn)處的切線
方程;
(Ⅱ)求在區(qū)間[0,2]上的最大值。
(Ⅰ),(Ⅱ)
本題主要考查基本性質(zhì)、導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識(shí),以及綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力。滿分15分。
(I)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115203974556.gif" style="vertical-align:middle;" />,
所以   
又當(dāng)時(shí),,
所以曲線處的切線方程為  
(II)解:令,解得
當(dāng),即a≤0時(shí),在[0,2]上單調(diào)遞增,從而

當(dāng)時(shí),即a≥3時(shí),在[0,2]上單調(diào)遞減,從而

當(dāng),即,上單調(diào)遞減,在上單調(diào)遞增,從而   
綜上所述,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)
的圖像經(jīng)過(guò)點(diǎn)如圖所示, (Ⅰ)求的解析式;
(Ⅱ)若對(duì)恒成立,
求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)f(x)=x3+ax2+5x+6在區(qū)間[1,3]上為單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為  (   )
A.[-,+∞]B.(-∞ ,-3)
C.(-∞ ,-3)∪[-,+∞]D.[-,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),.
(I)證明:當(dāng)時(shí),函數(shù)在其定義域內(nèi)為單調(diào)函數(shù);(II)若函數(shù)的圖象在點(diǎn)(1,)處的切線斜率為0,且當(dāng)時(shí),上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

理在直角坐標(biāo)平面內(nèi),已知三點(diǎn)A、B、C共線,函數(shù)滿足:(1)求函數(shù)的表達(dá)式;(2)若,求證:;(3)若不等式對(duì)任意及任意都成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題16分) 設(shè)函數(shù),且,其中是自然對(duì)數(shù)的底數(shù).(1)求的關(guān)系;(2)若在其定義域內(nèi)為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知對(duì)任意正整數(shù)n,滿足fn+1(x)=fn′(x),且f1(x)=sinx,則f2013(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)=ax3+3x2+2,若f′(-1)=4,則a的值是( 。
A.
19
3
B.
13
3
C.
10
3
D.
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若以曲線(c為實(shí)常數(shù))上任意一點(diǎn)為切點(diǎn)的切線的斜率恒為非負(fù)數(shù),則實(shí)數(shù)b的取值范圍為                        。

查看答案和解析>>

同步練習(xí)冊(cè)答案