已知二次函數(shù)的頂點坐標(biāo)為,且,
(1)求的解析式,
(2),的圖象恒在的圖象上方,
試確定實數(shù)的取值范圍,
(3)若在區(qū)間上單調(diào),求實數(shù)的取值范圍.
(1);(2);(3).
本試題主要是考查了二次函數(shù)的解析式的求解,以及函數(shù)圖像的位置關(guān)系的運用。和單調(diào)性的求解。
(1)由已知條件設(shè)出二次函數(shù)的 頂點式解析式,然后代點坐標(biāo)求解得到結(jié)論。
(2)根據(jù)圖像橫在直線的上方,轉(zhuǎn)化為不等式恒成立問題來解決得到結(jié)論。
(3)要使得函數(shù)在[a,a+1]上單調(diào),則可知區(qū)間在對稱軸的一側(cè)即可。
(1)由已知,設(shè),由,得,故
(2)由已知,即,化簡得,
設(shè),則只要,
,
(3)要使函數(shù)在單調(diào),則,則.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)某公司生產(chǎn)的新產(chǎn)品的成本是2元/件,售價是3元/件,
年銷售量為10萬件,為了獲得更好的效益,公司準備拿出一定的資金做廣告,根據(jù)經(jīng)驗,每年投入的廣告費是(萬元)時,產(chǎn)品的銷售量將是原銷售量的倍,且的二次函數(shù),它們的關(guān)系如下表:

···
1
2
···
5
···

···
1.5
1.8
···
1.5
···
 
(2)求的函數(shù)關(guān)系式;
(3)如果利潤=銷售總額成本費廣告費,試寫出年利潤S(萬元)與廣告費(萬元)的函數(shù)關(guān)系式;并求出當(dāng)廣告費為多少萬元時,年利潤S最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)
(1) 畫出函數(shù)圖像
(2)指出圖像的開口方向、對稱軸方程、頂點坐標(biāo);
(3)求函數(shù)的最大值或最小值;
(4)寫出函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知y=是二次函數(shù),且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間及值域..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù), 若,則(     ) 
A.或3B.2或3
C.或2D.或2或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),且.則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)解下列關(guān)于的不等式:  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分) 在區(qū)間[0,1]上的最大值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在R上是增函數(shù),則有
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案