【題目】已知α,β為銳角, =cos(α+β).
(1)求tan(α+β)cotα的值;
(2)求tanβ的最大值.

【答案】
(1)解:∵sinβ=cos(α+β)sinα,

∴sin[(α+β)﹣α]=cos(α+β)sinα,

∴sin(α+β)cosα﹣cos(α+β)sinα=cos(α+β)sinα

∴sin(α+β)cosα=2cos(α+β)sinα,

∴tan(α+β)cotα=2


(2)解:∵sinβ=cos(α+β)sinα=sinαcosαcosβ﹣sinβsin2α

∴sinβ(1+sin2α)=sinαcosαcosβ,

∵2tanβtan2α﹣tanα+tanβ=0,

∴(﹣1)2≥4(2tanβ)tanβ,

,當(dāng)且僅當(dāng) 時等號成立.

故tanβ的最大值為:


【解析】(1)由β=(α+β)﹣α,利用三角函數(shù)恒等變換的應(yīng)用即可化簡得解.(2)由條件利用兩角和差的正弦公式、同角三角函數(shù)的基本關(guān)系可得2tanβtan2α﹣tanα+tanβ=0,再根據(jù)△=1﹣4(2tanβ)tanβ≥0,求得tanβ的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
的夾角;
②求| + |和| |.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,且其6個頂點都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的半徑為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將參加數(shù)學(xué)競賽的1000名學(xué)生編號如下:0001,0002,0003,…,1000,按系統(tǒng)抽樣的方法從中抽取一個容量為50的樣本,如果在第一組抽得的編號是0015,則在第21組抽得的編號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,β∈( ,π),且sinα+cosα=a,cos(β﹣α)=
(1)若a= ,求sinαcosα+tanα﹣ 的值;
(2)若a= ,求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示.將日銷售量落入各組的頻率視為概率.

(1)求a的值并估計在一個月(按30天算)內(nèi)日銷售量不低于105個的天數(shù);
(2)利用頻率分布直方圖估計每天銷售量的平均值及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓C1:x2+y2=m與圓C2:x2+y2﹣6x﹣8y+16=0相外切.
(1)求m的值;
(2)若圓C1與x軸的正半軸交于點A,與y軸的正半軸交于點B,P為第三象限內(nèi)一點且在圓C1上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是邊長為2的等邊三角形,

(1)求證:平面PAM⊥平面PDM;
(2)若點E為PC中點,求二面角P﹣MD﹣E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)有三個不同的零點,則實數(shù)的取值范圍是

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊答案