在金融危機(jī)中,某鋼材公司積壓了部分圓鋼,經(jīng)清理知共有2009根.現(xiàn)將它們堆放在一起.
(1)若堆放成縱斷面為正三角形(每一層的根數(shù)比上一層根數(shù)多1根),并使剩余的圓鋼盡可能地少,則剩余了多少根圓鋼?
(2)若堆成縱斷面為等腰梯形(每一層的根數(shù)比上一層根數(shù)多1根),且不少于七層,
(Ⅰ)共有幾種不同的方案?
(Ⅱ)已知每根圓鋼的直徑為10cm,為考慮安全隱患,堆放高度不得高于4m,則選擇哪個(gè)方案,最能節(jié)省堆放場(chǎng)地?
分析:(1)根據(jù)題意列出前n層可以堆積的圓鋼的總數(shù),列出不等式解不等式可得出答案;
(2)(Ⅰ)根據(jù)題中要求的堆積方式寫(xiě)出堆積的總圓鋼數(shù)關(guān)于層數(shù)n的關(guān)系式,再根據(jù)n與2x+n-1的奇偶性不同討論可能的堆積方案;
(Ⅱ)根據(jù)(Ⅰ)中求得的四種堆積方案以及題中圓鋼的直徑和堆積要求分別討論符合條件的堆積方案,便可求出選擇堆放41層這個(gè)方案,最能節(jié)省堆放場(chǎng)地
解答:解:(1)由題意可知:第一層放1根,第二層放2根,第三層放3根,…第n層放n根,
∴n層一共放了S
n=
根圓鋼,
由題意可知S
n=
≤2000,
解不等式得當(dāng)n=62時(shí),使剩余的圓鋼盡可能地少,
此時(shí)剩余了56根圓鋼;
(2)當(dāng)縱斷面為等腰梯形時(shí),設(shè)共堆放n層,則從上到下每層圓鋼根數(shù)是以x為首項(xiàng)、1為公差的等差數(shù)列,
從而nx+
n(n-1)=2009,
即n(2x+n-1)=2×2009=2×7×7×41,
因n-1與n的奇偶性不同,
所以2x+n-1與n的奇偶性也不同,
且n<2x+n-1,從而由上述等式得:
或
或
或
,
所以共有4種方案可供選擇.(6分)
(3)因?qū)訑?shù)越多,最下層堆放得越少,占用面積也越少,所以由(2)可知:
若n=41,則x=29,說(shuō)明最上層有29根圓鋼,最下層有69根圓鋼,此時(shí),兩腰之長(zhǎng)為400cm,上下底之長(zhǎng)為280cm和680cm,從而梯形之高為200
cm,
而200
+10+10<400,所以符合條件;
若n=49,則x=17,說(shuō)明最上層有17根圓鋼,最下層有65根圓鋼,此時(shí),兩腰之長(zhǎng)為480cm,上下底之長(zhǎng)為160cm和640cm,從而梯形之高為240
cm,顯然大于4m,
不合條件,舍去;
綜上所述,選擇堆放41層這個(gè)方案,最能節(jié)省堆放場(chǎng)地(6分).
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì)以及等差數(shù)列的實(shí)際應(yīng)用,考查了同學(xué)們的計(jì)算能力,解題時(shí)注意分類(lèi)討論思想和方程思想的運(yùn)用,是各地高考的熱點(diǎn),同學(xué)們?cè)谄匠R嗉泳毩?xí).
科目:高中數(shù)學(xué)
來(lái)源:2009-2010學(xué)年江蘇省南通市海安高級(jí)中學(xué)高三(下)5月自檢數(shù)學(xué)試卷(2)(解析版)
題型:解答題
在金融危機(jī)中,某鋼材公司積壓了部分圓鋼,經(jīng)清理知共有2009根.現(xiàn)將它們堆放在一起.
(1)若堆放成縱斷面為正三角形(每一層的根數(shù)比上一層根數(shù)多1根),并使剩余的圓鋼盡可能地少,則剩余了多少根圓鋼?
(2)若堆成縱斷面為等腰梯形(每一層的根數(shù)比上一層根數(shù)多1根),且不少于七層,
(Ⅰ)共有幾種不同的方案?
(Ⅱ)已知每根圓鋼的直徑為10cm,為考慮安全隱患,堆放高度不得高于4m,則選擇哪個(gè)方案,最能節(jié)省堆放場(chǎng)地?
查看答案和解析>>