設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)求{an}前n項(xiàng)和Sn最大時(shí)n的值.

(1) -<d<-3    (2)6

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{}的前n項(xiàng)和為Sn,公差d≠0,且S3=9,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{}的通項(xiàng)公式;
(2)設(shè),求數(shù)列{}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對(duì)任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足f′=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=2(an+),求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的首項(xiàng)為a1=1,其前n項(xiàng)和為Sn,且對(duì)任意正整數(shù)n有n,an,Sn成等差數(shù)列.
(1)求證:數(shù)列{Sn+n+2}成等比數(shù)列.
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)第個(gè)正方形的邊長(zhǎng)為,求前個(gè)正方形的面積之和.
(注:表示的最小值.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列{bn}滿足bn=,其前n項(xiàng)和為Tn,求證:Tn<(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}滿足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求證:數(shù)列是等差數(shù)列并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anan+1,求證:b1+b2+…+bn< .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知首項(xiàng)為的等比數(shù)列{an}不是遞減數(shù)列,其前n項(xiàng)和為Sn(n∈N*),且S3a3,S5a5,S4a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)TnSn(n∈N*),求數(shù)列{Tn}的最大項(xiàng)的值與最小項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是公差不為零的等差數(shù)列,,且的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前項(xiàng)和為,試問(wèn)當(dāng)為何值時(shí),最大?并求出的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案