【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50],[50,60],…,[80,90],[90,100]

(1)求頻率分布圖中a的值;
(2)估計(jì)該企業(yè)的職工對該部門評分不低于80的概率;
(3)從評分在[40,60]的受訪職工中,隨機(jī)抽取2人,求此2人評分都在[40,50]的概率.

【答案】
(1)解:因?yàn)椋?.004+a+0.018+0.022×2+0.028)×10=1,解得a=0.006
(2)解:由已知的頻率分布直方圖可知,50名受訪職工評分不低于80的頻率為(0.022+0.018)×10=0.4,所以該企業(yè)職工對該部門評分不低于80的概率的估計(jì)值為0.4;
(3)解:受訪職工中評分在[50,60)的有:50×0.006×10=3(人),記為A1,A2,A3;

受訪職工評分在[40,50)的有:50×0.004×10=2(人),記為B1,B2

從這5名受訪職工中隨機(jī)抽取2人,所有可能的結(jié)果共有10種,

分別是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},

又因?yàn)樗槿?人的評分都在[40,50)的結(jié)果有1種,即{B1,B2},

故所求的概率為P=


【解析】(1)利用頻率分布直方圖中的信息,所有矩形的面積和為1,得到a;(2)對該部門評分不低于80的即為90和100,的求出頻率,估計(jì)概率;(3)求出評分在[40,60]的受訪職工和評分都在[40,50]的人數(shù),隨機(jī)抽取2人,列舉法求出所有可能,利用古典概型公式解答.
【考點(diǎn)精析】通過靈活運(yùn)用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+)(ω>0,0≤≤π)為偶函數(shù),其圖象上相鄰的兩個最高點(diǎn)之間的距離為2π.
(1)求f(x)的解析式;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠有4臺大型機(jī)器,在一個月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為.

(1)若出現(xiàn)故障的機(jī)器臺數(shù)為,求的分布列;

(2) 該廠至少有多少名工人才能保證每臺機(jī)器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率不少于90%?

(3)已知一名工人每月只有維修1臺機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體的棱長為1, 分別是棱的中點(diǎn),過直線的平面分別與棱交于,設(shè), ,給出以下四個命題:

②當(dāng)且僅當(dāng)時,四邊形的面積最。

③四邊形周長, ,則是奇函數(shù);

④四棱錐的體積為常函數(shù);

其中正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市共有初中學(xué)生270000人,其中初一年級,初二年級,初三年級學(xué)生人數(shù)分別為99000,90000,81000,為了解該市學(xué)生參加“開放性科學(xué)實(shí)驗(yàn)活動”的意向,現(xiàn)采用分層抽樣的方法從中抽取一個容量為3000的樣本,那么應(yīng)該抽取初三年級的人數(shù)為(
A.800
B.900
C.1000
D.1100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某出租車公司響應(yīng)國家節(jié)能減排的號召,已陸續(xù)購買了140輛純電動汽車作為運(yùn)營車輛,目前我國主流純電動汽車按續(xù)航里程數(shù)單位:公里分為3類,即類:,類:, 類:,該公司對這140輛車的行駛總里程進(jìn)行統(tǒng)計(jì),結(jié)果如下表:

類型

已行駛總里程不超過10萬公里的車輛數(shù)

10

40

30

已行駛總里程超過10萬公里的車輛數(shù)

20

20

20

(1)從這140輛汽車中任取一輛,求該車行駛總里程超過10萬公里的概率;

(2)公司為了了解這些車的工作狀況,決定抽取了14輛車進(jìn)行車況分析,按表中描述的六種情況進(jìn)行分層抽樣,設(shè)從類車中抽取了輛車.

的值;

如果從這輛車中隨機(jī)選取兩輛車,求恰有一輛車行駛總里程超過10萬公里的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將五個1,五個2,五個3,五個4,五個5共25個數(shù)填入一個5行5列的表格內(nèi)(每格填入一個數(shù)),使得同一行中任何兩數(shù)之差的絕對值不超過2,考查每行中五個數(shù)之和,記這五個和的最小值為,則的最大值為( )

A. B. 9 C. 10 D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列具有性質(zhì):對任意, 兩數(shù)至少有一個屬于

Ⅰ)分別判斷數(shù)集是否具有性質(zhì),并說明理由.

Ⅱ)求證:

Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線,直線(其中)與曲線相交于、兩點(diǎn).

Ⅰ)若,試判斷曲線的形狀.

Ⅱ)若,以線段為鄰邊作平行四邊形,其中頂點(diǎn)在曲線上, 為坐標(biāo)原點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案