如圖所示,在四面體OABC,OA、OB、OC兩兩垂直,OB=OC=3,OA=4.給出以下命題:

存在點(diǎn)D(O點(diǎn)除外),使得四面體DABC有三個(gè)面是直角三角形;

存在點(diǎn)D,使得點(diǎn)O在四面體DABC外接球的球面上;

存在唯一的點(diǎn)D使得四面體DABC是正棱錐;

存在無數(shù)個(gè)點(diǎn)D,使得ADBC垂直且相等.

其中正確命題的序號(hào)是    (把你認(rèn)為正確命題的序號(hào)填上). 

 

【答案】

①②④

【解析】O作平面ABC的垂線(O′為垂足),延長至D使O′D=OO′,連接AD,BD,CD,則四面體DABC有三個(gè)面是直角三角形,正確;

在以O、AB、C確定的球上,顯然存在點(diǎn)D滿足條件,正確;

因?yàn)?/span>AB=AC=5,BC=3,所以當(dāng)點(diǎn)D滿足BC=BD=CD=3AD=5,四面體是以△BCD為底面的正棱錐,這樣的D點(diǎn)有兩個(gè),所以不正確.

BC的中點(diǎn)O1,在平面AOO1內(nèi)以A為圓心,BC為半徑作圓,圓周上任一點(diǎn)滿足條件,所以這樣的點(diǎn)D有無數(shù)個(gè),正確.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在邊長為4的正方形紙片ABCD中,AC與BD相交于O,剪去△AOB,將剩余部分沿OC、OD折疊,使OA、OB重合,則以A、(B)、C、D、O為頂點(diǎn)的四面體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為4的正方形紙片ABCD中,AC與BD相交于O,剪去,將剩余部分沿OC、OD折疊,使OA、OB重合,則以A、(B)、C、D、O為頂點(diǎn)的四面體的體積為 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為4的正方形紙片ABCD中,AC與BD相交于O,剪去,將剩余部分沿OC、OD折疊,使OA、OB重合,則以A、(B)、C、D、O為頂點(diǎn)的四面體的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在邊長為4的正方形紙片ABCD中,AC與BD相交于O,剪去,將剩余部分沿OC、OD折疊,使OA、OB重合,則以A、(B)、C、D、O為頂點(diǎn)的四面體的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題(上海秋季)解析版(理) 題型:填空題

 [番茄花園1] 如圖所示,在邊長為4的正方形紙片ABCD中,AC與BD相交于O,剪去,將剩余部分沿OC、OD折疊,使OA、OB重合,則以A、(B)、C、D、O為頂點(diǎn)的四面體的體積為   

 


 [番茄花園1]12.

查看答案和解析>>

同步練習(xí)冊(cè)答案