精英家教網 > 高中數學 > 題目詳情
設函數處取得極值,且曲線在點處的切線垂直于直線
(1)求的值;
(2)若函數,討論的單調性.
(1)a=1,b=0;(2)見解析.

試題分析:(1)根據極值點,求導后可得,由在點處的切線垂直于直線可知該切線斜率為2.可得 ;(2)對 求導后對 的根的情況進行分類討論即可.
試題解析:(1)因,又在x=0處取得極限值,故從而       ,由曲線y=處的切線與直線相互垂直可知該切線斜率為2,即.
(2)由(Ⅰ)知,,.
.
①當;
②當,g(x)在R上為增函數;
方程有兩個不相等實根,
函數;
時,上為減函數;
時,上為增函數.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(1)當時,求函數在點處的切線方程;
(2)若函數上的圖像與直線恒有兩個不同交點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)若函數在點處的切線方程為,求的值;
(2)若,函數在區(qū)間內有唯一零點,求的取值范圍;
(3)若對任意的,均有,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

湖北宜昌“三峽人家”風景區(qū)為提高經濟效益,現(xiàn)對某一景點進行改造升級,從而擴大內需,提高旅游增加值,經過市場調查,旅游增加值萬元與投入萬元之間滿足:為常數,當萬元時,萬元;當萬元時,萬元.(參考數據:,
(Ⅰ)求的解析式;
(Ⅱ)求該景點改造升級后旅游利潤的最大值.(利潤=旅游收入-投入)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知定義在的函數,在處的切線斜率為
(Ⅰ)求的單調區(qū)間;
(Ⅱ)當時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若曲線的所有切線中,只有一條與直線垂直,則實數的值等于(   )
A.0B.2C.0或2D.3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數,曲線在點處的切線方程為,則曲線在點處切線的斜率為(   )
A.2B.C.4D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若存在過點(1,0)的直線與曲線都相切,則    (   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若曲線與曲線在交點處有公切線, 則   (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案