在長方體中,, E、 分別為、的中點.

(1)求證:平面;
(2)求證:平面
(1)參考解析;(2)參考解析

試題分析:(1)線面垂直的證明關鍵是要找到平面內(nèi)兩條相交直線與該直線平行.其中BC⊥DF較易,在通過所給的條件說明DF⊥FC.即可得所要證的結論.
(2)連結AC與DB交于點O.通過直線可得四邊形EAOF為平行四邊形所以可得AE//OF即可證得直線以平面的平行.本小題主要就是考查線面的關系,通過相應的判斷定理,結合具體的圖形即可得到所求的結論.
試題解析:在長方體中,,,、 分別為、的中點.
(1)證:∵BC⊥面DCC1D1.∴BC⊥DF.∵矩形DCC1D1中,DC=2a,DD1=CC1=a.∴DF=FC=∴DF2+FC2=DC2
∴DF⊥FC.∵BC∩FC=C.∴DF⊥面BCF
(2) 證:連結AC交BD于O,連結FO,EF .∵.∴.∴四邊形EAOF為平行四邊形
∴AE//OF. ∵AE面BDF. OF面BD.∴AE//面BDF
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分別為PC,PB的中點.

(Ⅰ)求證:PB⊥DM;
(Ⅱ)求點B到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,長方體中,,點的中點.

(1)求證:直線平面;
(2)求證:平面平面;
(3)求與平面所成的角大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方形所在平面與圓所在的平面相交于,線段為圓的弦,垂直于圓所在的平面,垂足為圓上異于、的點,設正方形的邊長為,且.

(1)求證:平面平面;
(2)若異面直線所成的角為,與底面所成角為,二面角所成角為,求證

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,平面ABCD,底面ABCD是菱形,,.

(1)求證:平面PAC;
(2)若,求所成角的余弦值;
(3)當平面PBC與平面PDC垂直時,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩條不同直線,是兩個不同的平面,下列命題正確的是(     )
A.B.,則
C.,則D.,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中假命題是(     )
A.垂直于同一條直線的兩條直線相互垂直
B.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
C.若一個平面經(jīng)過另一個平面的垂線,那么這兩個平面相互垂直
D.若一個平面內(nèi)的兩條相交直線與另一個平面內(nèi)的相交直線分別平行,那么這兩個平面相互平行

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知下列四個命題,其中真命題的序號是(    )
① 若一條直線垂直于一個平面內(nèi)無數(shù)條直線,則這條直線與這個平面垂直;
② 若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;
③ 若一條直線平行一個平面,另一條直線垂直這個平面,則這兩條直線垂直;
④ 若兩條直線垂直,則過其中一條直線有唯一一個平面與另外一條直線垂直;
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為直線,是兩個不同的平面,下列命題中正確的是( 。
A.若,,則B.若,,則
C.若,,則D.若,,則

查看答案和解析>>

同步練習冊答案