(2010•撫州模擬)已知:函數(shù)f(x)=-x3+ax2-4(a∈R).
(1)函數(shù)y=f(x)的圖象在點(diǎn)P(1,f(1))處的切線的傾斜角為
π4
,求a的值;
(2)若存在x0∈(0,+∞)使f(x0)>0,求a的取值范圍.
分析:(1)求出f(x)的導(dǎo)函數(shù),把x=1代入導(dǎo)函數(shù)中求出的導(dǎo)函數(shù)值即為切線的斜率,然后再根據(jù)切線的傾斜角求出切線的斜率,兩個(gè)斜率相等即可求出a的值;
(2)求出f(x)的導(dǎo)函數(shù),當(dāng)a小于等于0時(shí),由x大于0,得到導(dǎo)函數(shù)小于0,即函數(shù)在(0,+∞)上為減函數(shù),又x=0時(shí)f(x)的值為-4且當(dāng)x大于0時(shí),f(x)小于-4,所以當(dāng)a小于等于0時(shí),不存在x0>0,使f(x0)>0;當(dāng)a大于0時(shí),分區(qū)間討論導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的增減性得到f(x)的最大值,讓最大值大于0,列出關(guān)于a的不等式,求出不等式的解集即可得到a的取值范圍,綜上,得到滿足題意a的取值范圍.
解答:解:(1)依題意f′(1)=tan
π
4
=1
,∴-3+2a=1,即a=2.(4分)
(2)f′(x)=-3x(x-
2a
3
)

①若a≤0,當(dāng)x>0時(shí),f′(x)<0,∴f(x)在[0,+∞)上單調(diào)遞減.又f(0)=-4,則當(dāng)x>0時(shí),f(x)<-4.
∴a≤0時(shí),不存在x0>0,使f(x0)>0.(8分)
②若a>0,則當(dāng)0<x<
2a
3
時(shí),f'(x)>0,當(dāng)x>
2a
3
時(shí),f'(x)<0.從而f(x)在(0,
2a
3
]

單調(diào)遞增,在[
2a
3
,+∞)
上單調(diào)遞減.∴當(dāng)x∈(0,+∞)時(shí),
f(x)max=f(
2a
3
)
=-
8a3
27
+
4a3
9
-4=
4a3
27
-4
,據(jù)題意,
4a3
27
-4>0
,即a3>27,∴a>3.
綜上,a的取值范圍是(3,+∞).(12分)
點(diǎn)評(píng):此題考查學(xué)生利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,會(huì)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)設(shè)隨機(jī)變量ξ~N(μ,σ2),對(duì)非負(fù)數(shù)常數(shù)k,則P(|ξ-μ|≤kσ)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又頂點(diǎn)A1在底面ABC上的射影落在AC上,側(cè)棱AA1與底面ABC成60°角,D為AC的中點(diǎn).
(1)求證:BD⊥AA1;
(2)如果二面角A1-BD-C1為直二面角,試求側(cè)棱CC1與側(cè)面A1ABB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)已知:數(shù)列{an},{bn}中,a1=0,b1=1,且當(dāng)n∈N*時(shí),an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求最小自然數(shù)k,使得當(dāng)n≥k時(shí),對(duì)任意實(shí)數(shù)λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+(λ-3)恒成立;
(3)設(shè)dn=
1
b1
+
1
b2
+…+
1
bn
(n∈N*),求證:當(dāng)n≥2都有dn2>2(
d2
2
+
d3
3
+…+
dn
n
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)設(shè)f-1(x)是函數(shù)f(x)=2x-(
1
3
x+x的反函數(shù),則f-1(x)>1成立的x的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)若集合A={x∈Z+|
x
2
Z+},B={
x
2
Z+|x∈Z+}
,則A∩B等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案