(本小題滿(mǎn)分13分)已知.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍.
解:(1) 令
∴ ∴
由于的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/a/d5e7w.gif" style="vertical-align:middle;" />,
∴在單調(diào)遞減,在單調(diào)遞增··············································· 6分
(2) ,由于
當(dāng)x = 1時(shí),
∴·························································································· 13分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù) (1)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍; (2)若是的極值點(diǎn),求在上的最大值;(3)在(2)的條件下,是否存在實(shí)數(shù),使得函數(shù)的圖像與函數(shù)的圖象恰有3個(gè)交點(diǎn)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,試說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(13分)已知是定義在上的奇函數(shù),當(dāng)時(shí),,其中是自然對(duì)數(shù)的底數(shù).
(1)求的解析式;
(2)求的圖象在點(diǎn)處的切線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知二次函數(shù),直線(xiàn),直線(xiàn)(其中,為常數(shù));.若直線(xiàn)1、2與函數(shù)的圖象以及、軸與函數(shù)的圖象所圍成的封閉圖形如圖陰影所示.
(Ⅰ)求、、的值;
(Ⅱ)求陰影面積關(guān)于的函數(shù)的解析式;
(Ⅲ)若問(wèn)是否存在實(shí)數(shù),使得的圖象與的圖象有且只有兩個(gè)不同的交點(diǎn)?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)設(shè)函數(shù).
(1)對(duì)于任意實(shí)數(shù),恒成立,求的最大值;
(2)若方程有且僅有一個(gè)實(shí)根,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù)
(I)求的單調(diào)區(qū)間;
(II)若對(duì)于任意的,都有求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)已知函數(shù)(常數(shù).
(Ⅰ) 當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(Ⅱ)討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)(為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com