分析:①對(duì)數(shù)列遞推式化簡(jiǎn),再疊乘,即可求{an}通項(xiàng)公式;
②確定數(shù)列通項(xiàng),利用倒序相加法,即可求得結(jié)論;
③n≤2時(shí),n結(jié)論成立;n≥4時(shí),n!>2 n,即可證得結(jié)論.
解答:①解:∵
an+12-nan+1•an-(n+1)an2=0∴(a
n+1+a
n)[a
n+1-(n+1)a
n]=0
∵{a
n}是正項(xiàng)數(shù)列,
∴a
n+1-(n+1)a
n=0
∴
=n+1
∴
=2,
=3,…,
=n
∵a
1=1,∴疊乘可得a
n=n!;
②解:
bk==
=(2k-1)•
∴S
n=
+3
+…+(2n-1)•
,
倒序可得S
n=(2n-1)•
+…+3
+
相加可得:2S
n=(2n-1)•
+(2n-2)•
+…+(2n-2)•
+(2n-1)•
=2+(2n-2)•2
n∴S
n=1+(n-1)•2
n;
③證明:
cn==
,
n≤2時(shí),n結(jié)論成立;n≥4時(shí),∴n!>2
n,
∴其前n項(xiàng)和為T(mén)
n<1+
+
+
+…+
=
-<
即
Tn<.
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列的通項(xiàng)與求和,考查不等式的證明,綜合性強(qiáng).