【題目】已知橢圓的焦距為,且,圓軸交于點為橢圓上的動點,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點,,求的取值范圍.

【答案】(1)圓的方程為,橢圓的方程為.;(2).

【解析】分析:(1)由題意結合幾何關系得到關于a,b,c的方程組,求解方程組可得,.則圓的方程為,橢圓的方程為.

(2)①當直線的斜率不存在時,計算可得.

②當直線的斜率存在時,設直線的方程為利用圓心到直線的距離等于半徑可得,聯(lián)立直線與橢圓方程可得由弦長公式有.,換元后結合二次函數(shù)的性質可得.的取值范圍是.

詳解:(1)因為,所以.

因為,所以點為橢圓的焦點,所以.

,則,所以.

時,,

由①,②解得,所以,.

所以圓的方程為,橢圓的方程為.

(2)①當直線的斜率不存在時,不妨取直線的方程為,解得.

②當直線的斜率存在時,設直線的方程為.

因為直線與圓相切,所以,即,

聯(lián)立,消去可得,

.

=

=.

,則,所以=,

所以=,所以.

綜上,的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點,和直線相切,且圓心在直線上.

(1)求圓的方程;

(2)已知直線經(jīng)過原點,并且被圓截得的弦長為2,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)求平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若在定義域上不單調,求的取值范圍;

(2)設分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“作品獲得一等獎”; 乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”; 丁說:“作品獲得一等獎”.

若這四位同學只有兩位說的話是對的,則獲得一等獎的作品是( )

A. 作品 B. 作品 C. 作品 D. 作品

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為

(1) 求的值;

(2) 證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓=1(a>b>0)上的點P到左,右兩焦點F1,F2的距離之和為2,離心率為.

(1)求橢圓的標準方程;

(2)過右焦點F2的直線l交橢圓于A,B兩點,若y軸上一點M(0,)滿足|MA|=|MB|,求直線l的斜率k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四面體中,分別是的中點,下面四個結論:

//平面

平面

③平面平面

④平面平面

其中正確結論的序號是______________.

查看答案和解析>>

同步練習冊答案