以雙曲線:
的右焦點為圓心,并與其漸近線相切的圓的標準方程是______
試題分析:由題意可知,圓心為(3,0),又與漸近線相切,利用圓心到直線的距離等于半徑可知半徑為1,所以所求圓的標準方程為
.
點評:求圓的方程關鍵是確定圓心和半徑,本小題難度較低,仔細運算即可.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
設
和
為雙曲線
(
)的兩個焦點, 若點
和點
是正三角形的三個頂點,則雙曲線的離心率為( )。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線
的離心率為2,焦點與橢圓
的焦點相同,求雙曲線的方程及焦點坐標。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線
,
為
上任意一點;
(1)求證:點
到雙曲線
的兩條漸近線的距離的乘積是一個常數(shù);
(2)設點
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,設拋物線
(
)的準線與
軸交于
,焦點為
;以
、
為焦點,離心率
的橢圓
與拋物線
在
軸上方的一個交點為
.
(1)當
時,求橢圓的方程;
(2)在(1)的條件下,直線
經過橢圓
的右焦點
,與拋物線
交于
、
,如果以線段
為直徑作圓,試判斷點
與圓的位置關系,并說明理由;
(3)是否存在實數(shù)
,使得
的邊長是連續(xù)的自然數(shù),若存在,求出這樣的實數(shù)
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,一條經過點
且方向向量為
的直線
交橢圓
于
兩點,交
軸于
點,且
.
(1)求直線
的方程;
(2)求橢圓
長軸長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知橢圓方程
,點
,A
,P為橢圓上任意一點,則
的取值范圍是
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
左、右焦點分別為F
1、F
2,點
,點F
2在線段PF
1的中垂線上。
(1)求橢圓C的方程;
(2)設直線
與橢圓C交于M、N兩點,直線F
2M與F
2N的傾斜角互補,求證:直線
過定點,并求該定點的坐標。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分13分)已知橢圓
的左焦點
的坐標為
,
是它的右焦點,點
是橢圓
上一點,
的周長等于
.
(1)求橢圓
的方程;
(2)過定點
作直線
與橢圓
交于不同的兩點
,且
(其中
為坐標原點),求直線
的方程.
查看答案和解析>>