【題目】正三棱錐V﹣ABC的底面邊長(zhǎng)為2,E,F(xiàn),G,H分別是VA,VB,BC,AC的中點(diǎn),則四邊形EFGH的面積的取值范圍是

【答案】( ,+∞)
【解析】解:由條件可知:EF=HG=1,EFGH是平行四邊形,
因?yàn)檎忮FV﹣ABC,所以EFGH是矩形而EH,F(xiàn)G,是變量,
當(dāng)V點(diǎn)在ABC平面時(shí),VA=VB=VC= ,
此時(shí)EH,F(xiàn)G有最小值,EH=FG= VA=
EFGH的面積為:EFEH=1× =
∴四邊形EFGH的面積的取值范圍是( ,+∞).
所以答案是:( ,+∞).

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解棱錐的結(jié)構(gòu)特征的相關(guān)知識(shí),掌握側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)設(shè)函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)函數(shù)有最大值且最大值大于時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .若 ,求 的值;當(dāng) 時(shí),求 的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一副三角板ABC與ABD擺成如圖所示的直二面角D﹣AB﹣C,(其中BD=2AD,BC=AC)則異面直線DC,AB所成角的正切值為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定圓P:x2+y2=2x及拋物線S:y2=4x,過(guò)圓心P作直線l,此直線與上述兩曲線的四個(gè)交點(diǎn),自上而下順次為A,B,C,D;如果線段AB,BC,CD的長(zhǎng)度按此順序構(gòu)成一個(gè)等差數(shù)列,則直線l的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=2BC,點(diǎn)M在邊DC上,點(diǎn)F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點(diǎn)D位于D′位置,連接D′B,D′C得四棱錐D′﹣ABCM.

(1)求證:AM⊥D′F;
(2)若∠D′EF= ,直線D'F與平面ABCM所成角的大小為 ,求直線AD′與平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)為,且離心率為 .
(1)求橢圓的方程;
(2)直線(與坐標(biāo)軸 不平行)與橢圓交于不同的兩點(diǎn),且線段中點(diǎn)的橫坐標(biāo)為 ,求直線傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司準(zhǔn)備將1000萬(wàn)元資金投入到市環(huán)保工程建設(shè)中,現(xiàn)有甲、乙兩個(gè)建設(shè)項(xiàng)目選擇,若投資甲項(xiàng)目一年后可獲得的利潤(rùn)(萬(wàn)元)的概率分布列如下表所示:

的期望;若投資乙項(xiàng)目一年后可獲得的利潤(rùn)(萬(wàn)元)與該項(xiàng)目建設(shè)材料的成本有關(guān),在生產(chǎn)的過(guò)程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價(jià)格調(diào)整,兩次調(diào)整相互獨(dú)立且調(diào)整的概率分別為.若乙項(xiàng)目產(chǎn)品價(jià)格一年內(nèi)調(diào)整次數(shù)(次數(shù))與的關(guān)系如下表所示:

(1)求的值;

(2)求的分布列;

(3)若,則選擇投資乙項(xiàng)目,求此時(shí)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案