已知a>0且a≠1,設p:函數(shù)y=ax在(-∞,+∞)上是減函數(shù);q:方程ax2+x+
12
=0
有兩個不等的實數(shù)根.若“p∧q”為假命題,“p∨q”為真命題,求a的取值范圍.
分析:先求出命題p、q為真命題時a的范圍,根據(jù)“p∧q”為假命題,“p∨q”為真命題得到p,q一真一假,列出關于a的不等式組,求出a的范圍.
解答:解:若p真,則0<a<1   …(2分)
若q真,則
a≠0
△>0
  …(4分)
解得 0<a<
1
2
,…(6分)
因為“p∧q”為假命題,“pVq”為真命題
所以p,q一真一假    …(8分)
0<a<1
a≥
1
2
a≥1
0<a<
1
2
   …(12分)
解得,a的范圍是[
1
2
,1)…(16分)
點評:本題考查解決復合命題的真假問題,應該先求出構成其簡單命題為真命題時參數(shù)的范圍,再據(jù)真值表求出參數(shù)的范圍,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,設p:函數(shù)y=ax在R上單調遞增,q:設函數(shù)y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數(shù)y≥1恒成立,若p∧q為假,p∨q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:普陀區(qū)二模 題型:解答題

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案