(全國Ⅰ卷理21文22)雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.

(Ⅰ)求雙曲線的離心率;

(Ⅱ)設被雙曲線所截得的線段的長為4,求雙曲線的方程.

解:(Ⅰ)設,,

由勾股定理可得:

得:,

由倍角公式,解得,則離心率

(Ⅱ)過直線方程為,與雙曲線方程聯(lián)立

,代入,化簡有

將數(shù)值代入,有,解得

故所求的雙曲線方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(天津卷理21文22)已知中心在原點的雙曲線C的一個焦點是,一條漸近線的方程是.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)若以為斜率的直線與雙曲線C相交于兩個不同的點M,N,線段MN的垂直平分線與兩坐標軸圍成的三角形的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(天津卷理21文22)已知中心在原點的雙曲線C的一個焦點是,一條漸近線的方程是.

(Ⅰ)求雙曲線C的方程;

(Ⅱ)若以為斜率的直線與雙曲線C相交于兩個不同的點M,N,線段MN的垂直平分線與兩坐標軸圍成的三角形的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(全國Ⅰ卷理21文22)雙曲線的中心為原點,焦點在軸上,兩條漸近線分別為,經過右焦點垂直于的直線分別交兩點.已知成等差數(shù)列,且同向.

(Ⅰ)求雙曲線的離心率;

(Ⅱ)設被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(全國Ⅰ卷理19文21)已知函數(shù)

(Ⅰ)討論函數(shù)的單調區(qū)間;

(Ⅱ)設函數(shù)在區(qū)間內是減函數(shù),求的取值范圍.

查看答案和解析>>

同步練習冊答案