【題目】學(xué)生學(xué)習(xí)的自律性很重要.某學(xué)校對(duì)自律性與學(xué)生成績(jī)是否有關(guān)進(jìn)行了調(diào)研,從該校學(xué)生中隨機(jī)抽取了100名學(xué)生,通過調(diào)查統(tǒng)計(jì)得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表:

自律性一般

自律性強(qiáng)

合計(jì)

成績(jī)優(yōu)秀

40

成績(jī)一般

20

合計(jì)

50

100

1)補(bǔ)全列聯(lián)表中的數(shù)據(jù);

2)判斷是否有的把握認(rèn)為學(xué)生的自律性與學(xué)生成績(jī)有關(guān).

參考公式及數(shù)據(jù):.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

【答案】1)列聯(lián)表見解析;(2)有的把握認(rèn)為學(xué)生的自律性與學(xué)生成績(jī)有關(guān).

【解析】

1)由總?cè)藬?shù)為100可補(bǔ)全表中的數(shù)據(jù)

2)算出即可

1)因?yàn)榭側(cè)藬?shù)為100,可填寫列聯(lián)表如下:

自律性一般

自律性強(qiáng)

合計(jì)

成績(jī)優(yōu)秀

10

30

40

成績(jī)一般

40

20

60

合計(jì)

50

50

100

2)根據(jù)表中數(shù)據(jù),得

所以有的把握認(rèn)為學(xué)生的自律性與學(xué)生成績(jī)有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示將同心圓環(huán)均勻分成n().在內(nèi)環(huán)中固定數(shù)字1~n.問能否將數(shù)字1~n填入外環(huán)格內(nèi),使得外環(huán)旋轉(zhuǎn)任意格后有且僅有一個(gè)格中內(nèi)外環(huán)的數(shù)字相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個(gè)字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個(gè)字都取到記為事件,用隨機(jī)模擬的方法估計(jì)事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個(gè)隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估計(jì)事件發(fā)生的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.

求甲在4局以內(nèi)(含4局)贏得比賽的概率;

為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若,求證:;

(2)若時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)期間,甲、乙、丙三家中國(guó)企業(yè)都有意向購(gòu)買同一種型號(hào)的機(jī)床設(shè)備,他們購(gòu)買該機(jī)床設(shè)備的概率分別為,且三家企業(yè)的購(gòu)買結(jié)果相互之間沒有影響,則三家企業(yè)中恰有1家購(gòu)買該機(jī)床設(shè)備的概率是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的極值;

(2)設(shè)函數(shù).當(dāng)=時(shí),若區(qū)間[1,e]上存在x0,使得,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)經(jīng)過兩點(diǎn).

(1)求橢圓的方程;

(2)過原點(diǎn)的直線與橢圓交于兩點(diǎn),橢圓上一點(diǎn)滿足,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一張半徑為1米的圓形鐵皮,工人師傅需要剪一塊頂角為銳角的等腰三角形,不妨設(shè) , 邊上的高為 ,圓心為 ,為了使三角形的面積最大,我們?cè)O(shè)計(jì)了兩種方案.

(1)方案1:設(shè) ,用表示 的面積 ; 方案2:設(shè)的高,用表示 的面積;

(2)請(qǐng)從(1)中的兩種方案中選擇一種,求出面積的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案