解答:解:(I)當(dāng)a=1時(shí),f(x)=lnx-x
2+x,其定義域是(0,+∞),
∴f′(x)=
-2x+1=-
令f'(x)=0,即-
=0,解得x=-
或x=1.
∵x>0,∴x=-
舍去.
當(dāng)0<x<1時(shí),f'(x)>0;當(dāng)x>1時(shí),f'(x)<0.
∴函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,在區(qū)間(1,+∞)上單調(diào)遞減
∴當(dāng)x=1時(shí),函數(shù)f(x)取得極大值,其值為f(1)=ln1-1
2+1=0;無極小值.
(II)f′(x)=
-2a2x+a=
=
若a=0,f′(x)=
>0,∴函數(shù)的單調(diào)遞增區(qū)間為(0,+∞)
若a≠0,令f′(x)=
=0,∴x1=-
,x2=
當(dāng)a>0時(shí),函數(shù)在區(qū)間(0,
),f′(x)>0,函數(shù)為增函數(shù);在區(qū)間(
,+∞),f′(x)<0,函數(shù)為減函數(shù)
∴函數(shù)的單調(diào)遞增區(qū)間為(0,
),函數(shù)的單調(diào)遞減區(qū)間為(
,+∞)
當(dāng)a<0時(shí),函數(shù)在區(qū)間(0,-
),f′(x)>0,函數(shù)為增函數(shù);在區(qū)間(-
,+∞),f′(x)<0,函數(shù)為減函數(shù)
∴函數(shù)的單調(diào)遞增區(qū)間為(0,-
),函數(shù)的單調(diào)遞減區(qū)間為(-
,+∞).