(2012•棗莊一模)在平面直角坐標(biāo)系xOy中,設(shè)A,B,C是圓x2+y2=1上相異三點(diǎn),若存在正實(shí)數(shù)λ,μ,使得
OC
OA
OB
,則(λ-3)22的取值范圍是( 。
分析:
OC
OA
OB
得μ2=1+λ2-2λ
OA
OC
,從而可構(gòu)建函數(shù)f(λ)=(λ-3)22,即可求得(λ-3)22的取值范圍.
解答:解:因?yàn)锳,B,C互異,所以-1<
OA
OC
<1,
OC
OA
OB
得μ2=1+λ2-2λ
OA
OC

則f(λ)=(λ-3)22=2λ2-6λ-2λ
OA
OC
+10>2λ2-8λ+10≥2.
f(λ)=(λ-3)22=2λ2-6λ-2λ
OA
OC
+10<2λ2-4λ+10,無最大值,
∴(λ-3)22的取值范圍是(2,+∞).
故選D.
點(diǎn)評:本題考查向量知識的運(yùn)用,考查函數(shù)的最值,確定函數(shù)解析式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)設(shè)f(x)=
x-3,x≥10
f[f(x+5),x<10
則f(8)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)如圖,CDEF是以圓O為圓心,半徑為1的圓的內(nèi)接正方形,將一顆豆子隨機(jī)地扔到該圓內(nèi),用A表示事件“豆子落在扇形OCFH內(nèi)”(點(diǎn)H將劣弧
EF
二等分),則事件A發(fā)生的概率P(A)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)給定兩個長度為1的平面向量
OA
OB
,它們的夾角為120°,如圖所示,點(diǎn)C在以O(shè)為圓心的圓弧
AB
上變動.若
OC
=x
OA
+y
OB
(x,y∈R),則x-y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)設(shè)數(shù)列{an}滿足a1=1,a2=2,對任意的n∈N*,an+2是an+1與an的等差中項(xiàng).
(1)設(shè)bn=an+1-an,證明數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)公式;
(2)寫出數(shù)列{an}的通項(xiàng)公式(不要求計(jì)算過程),令cn=
3
2
n(
5
3
-an)
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)已知函數(shù)f(x)=
1
3
ax3+
b
2
x2+x+1
,其中a>0,a,b∈R.
(1)當(dāng)a,b滿足什么條件時,f(x)取得極值?
(2)若f(x)在區(qū)間[1,2]上單調(diào)遞增,試用a表示b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案