精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)= 的圖象上有且僅有四個不同的點關于直線y=﹣1的對稱點在y=kx﹣1的圖象上,則實數k的取值范圍是(
A.
B.
C.
D.

【答案】A
【解析】解:∵函數f(x)= 的圖象上有且僅有四個不同的點關于直線y=﹣1的對稱點在y=kx﹣1的圖象上,

而函數y=kx﹣1關于直線y=﹣1的對稱圖象為y=﹣kx﹣1,

∴f(x)= 的圖象與y=﹣kx﹣1的圖象有且只有四個不同的交點,

作函數f(x)= 的圖象與y=﹣kx﹣1的圖象如下,

易知直線y=﹣kx﹣1恒過點A(0,﹣1),

設直線AC與y=xlnx﹣2x相切于點C(x,xlnx﹣2x),

y′=lnx﹣1,

故lnx﹣1= ,

解得,x=1;

故kAC=﹣1;

設直線AB與y=x2+ x相切于點B(x,x2+ x),

y′=2x+

故2x+ = ,

解得,x=﹣1;

故kAB=﹣2+ =﹣ ;

故﹣1<﹣k<﹣ ,

<k<1;

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=(x﹣2)lnx﹣ax+1.
(1)若f(x)在區(qū)間(1,+∞)上單調遞增,求實數a的取值范圍;
(2)若存在唯一整數x0 , 使得f(x0)<0成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三角形ABC中,角A、B、C的對邊分別為a,b,c,a=4bcosC,
(1)求角B 的值;
(2)若 ,求三角形ABC 的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=25x , g(x)=x+t,設h(x)=max{f(x),g(x)}.若當x∈N+時,恒有h(5)≤h(x),則實數t的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x的不等式|x+a|<b的解集為{x|2<x<4}.
(1)求實數a,b的值;
(2)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)上點P,其左、右焦點分別為F1 , F2 , △PF1F2的面積的最大值為 ,且滿足 =3
(1)求橢圓E的方程;
(2)若A,B,C,D是橢圓上互不重合的四個點,AC與BD相交于F1 , 且 =0,求 的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 ,記Ik=|fk(a2)﹣fk(a1)|+|fk(a3)﹣fk(a2)|++|fk(a2016)﹣fk(a2015)|,k=1,2,則(
A.I1<I2
B.I1>I2
C.I1=I2
D.I1 , I2大小關系不確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知甲,乙兩輛車去同一貨場裝貨物,貨場每次只能給一輛車裝貨物,所以若兩輛車同時到達,則需要有一車等待.已知甲、乙兩車裝貨物需要的時間都為30分鐘,倘若甲、乙兩車都在某1小時內到達該貨場,則至少有一輛車需要等待裝貨物的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函數f(x)的單調區(qū)間;
(2)當x≥0時,不等式f(x)≤ex恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案