在中,分別是內(nèi)角的對(duì)邊,且,若
(1)求的大小;
(2)設(shè)為的面積, 求的最大值及此時(shí)的值.
(1);(2)當(dāng)時(shí),取最大值.
解析試題分析:本題主要考查解三角形中正弦定理和余弦定理的運(yùn)用、向量平行的充要條件以及三角形面積公式等數(shù)學(xué)知識(shí),考查基本運(yùn)算能力.第一問,先利用向量平行的充要條件列出表達(dá)式,然后用正弦定理將角轉(zhuǎn)化為邊,再利用余弦定理求,注意三角形中角的范圍,確定角的大小;第二問,用正弦定理表示和邊,然后代入到三角形面積公式中,得到所求的表達(dá)式,再利用兩角和與差的余弦公式化簡表達(dá)式,求最值.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a3/8/ka8sj.png" style="vertical-align:middle;" />,所以
根據(jù)正弦定理得,即
由余弦定理得 又,
所以 6分
(2)由正弦定理及得,
所以
所以當(dāng)時(shí),即時(shí),取最大值. 12分
考點(diǎn):1.兩向量平行的充要條件;2.正弦定理;3.余弦定理;4.三角形面積公式;5.三角函數(shù)最值;6.兩角和與差的余弦公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).其中
(1)求的最小正周期;
(2)當(dāng)時(shí),求實(shí)數(shù)的值,使函數(shù)的值域恰為并求此時(shí)在上的對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,角、、所對(duì)的邊分別為、、,,,.
(1)求角的大;
(2)若,求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),求
(1)函數(shù)的最小值及此時(shí)的的集合.
(2)函數(shù)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=2cos2x+sin2x+a(a∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[0,]時(shí),f(x)的最大值為2,求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com