已知函數(shù)的兩個極值點分別為,且,,點表示的平面區(qū)域為,若函數(shù)的圖像上存在區(qū)域內(nèi)的點,則實數(shù)的取值范圍是(  )
A.B.C.D.
B

試題分析:的兩根為,且,,故有,即,作出區(qū)域,如圖陰影部分,可得,
所以.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)).
(1)證明:當(dāng)時,上是減函數(shù),在上是增函數(shù),并寫出當(dāng)的單調(diào)區(qū)間;
(2)已知函數(shù),函數(shù),若對任意,總存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我國西部某省4A級風(fēng)景區(qū)內(nèi)住著一個少數(shù)民族村,該村投資了800萬元修復(fù)和加強民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個月內(nèi)(每月按30天計算)每天的旅游人數(shù)與第x天近似地滿足(千人),且參觀民俗文化村的游客人均消費近似地滿足(元).
(1)求該村的第x天的旅游收入(單位千元,1≤x≤30,)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天的計量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)用函數(shù)單調(diào)性的定義證明函數(shù)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某種海洋生物身體的長度(單位:米)與生長年限t(單位:年)
滿足如下的函數(shù)關(guān)系:.(設(shè)該生物出生時t=0)
(1)需經(jīng)過多少時間,該生物的身長超過8米;
(2)該生物出生后第3年和第4年各長了多少米?并據(jù)此判斷,這2年中哪一年長得更快.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我國是水資源較貧乏的國家之一,各地采用價格調(diào)控等手段來達到節(jié)約用水的目的,某市每戶每月用水收費辦法是:水費=基本費+超額費+定額損耗費.且有如下兩條規(guī)定:
①若每月用水量不超過最低限量立方米,只付基本費10元加上定額損耗費2元;
②若用水量超過立方米時,除了付以上同樣的基本費和定額損耗費外,超過部分每立方米加付元的超額費.
解答以下問題:(1)寫出每月水費(元)與用水量(立方米)的函數(shù)關(guān)系式;
(2)若該市某家庭今年一季度每月的用水量和支付的費用如下表所示:
月份
用水量(立方米)
水費(元)

5
17

6
22


12
 
試判斷該家庭今年一、二、三各月份的用水量是否超過最低限量,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù),對任意實數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式和值域;
(2)證明:當(dāng)時,數(shù)列在該區(qū)間上是遞增數(shù)列;
(3)已知,是否存在非零整數(shù),使得對任意,都有
 恒成立,若存在,求之;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知函數(shù)
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)求證:;
(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設(shè)函數(shù),,是否存在“分界線”?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

右圖是函數(shù)的圖像,它與x軸有4個不同的公共點.給出下列四個區(qū)間,不能用二分法求出函數(shù)在區(qū)間(  )上的零點.
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案